Strecken und Geraden - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Ergebnis der Suche nach: (Freitext: STRECKEN und GERADEN)
Es wurden 30 Einträge gefunden
- Treffer:
- 1 bis 10
-
Mathe - Symmetrie
Auf dem werbefinanzierten Portal finden Sie Erklärungen, Beispiele, ein Quiz sowie Aufgaben zur Achsensymmetrie, Spiegelsymmetrie, zu Strecken und Geraden.
Details { "DBS": "DE:DBS:62043" }
-
Parabel strecken, Beispiel 3 | A.04.09
Strecken und Stauchen sind in Mathe mehr oder weniger das Gleiche. Staucht man eine Parabel (quetscht sie also zusammen) entspricht das einem Strecken mit einem Streckfaktor von weniger als 1. Man kann Parabel auf unterschiedliche Weisen strecken. Am wichtigsten ist die Streckung in y-Richtung. Hier muss man unterscheiden, ob man die Parabel von der x-Achse aus oder vom ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008498" }
-
Parabel strecken | A.04.09
Strecken und Stauchen sind in Mathe mehr oder weniger das Gleiche. Staucht man eine Parabel (quetscht sie also zusammen) entspricht das einem Strecken mit einem Streckfaktor von weniger als 1. Man kann Parabel auf unterschiedliche Weisen strecken. Am wichtigsten ist die Streckung in y-Richtung. Hier muss man unterscheiden, ob man die Parabel von der x-Achse aus oder vom ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008495" }
-
Parabel strecken, Beispiel 1 | A.04.09
Strecken und Stauchen sind in Mathe mehr oder weniger das Gleiche. Staucht man eine Parabel (quetscht sie also zusammen) entspricht das einem Strecken mit einem Streckfaktor von weniger als 1. Man kann Parabel auf unterschiedliche Weisen strecken. Am wichtigsten ist die Streckung in y-Richtung. Hier muss man unterscheiden, ob man die Parabel von der x-Achse aus oder vom ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008496" }
-
Parabel strecken, Beispiel 2 | A.04.09
Strecken und Stauchen sind in Mathe mehr oder weniger das Gleiche. Staucht man eine Parabel (quetscht sie also zusammen) entspricht das einem Strecken mit einem Streckfaktor von weniger als 1. Man kann Parabel auf unterschiedliche Weisen strecken. Am wichtigsten ist die Streckung in y-Richtung. Hier muss man unterscheiden, ob man die Parabel von der x-Achse aus oder vom ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008497" }
-
Parabel strecken, Beispiel 4 | A.04.09
Strecken und Stauchen sind in Mathe mehr oder weniger das Gleiche. Staucht man eine Parabel (quetscht sie also zusammen) entspricht das einem Strecken mit einem Streckfaktor von weniger als 1. Man kann Parabel auf unterschiedliche Weisen strecken. Am wichtigsten ist die Streckung in y-Richtung. Hier muss man unterscheiden, ob man die Parabel von der x-Achse aus oder vom ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008499" }
-
Beweise über die Vektorgeometrie | V.10
Es gibt in der Mathematik den ein oder anderen Beweis, den man nur über die vektorielle Geometrie führen kann. Einige dieser Beweisverfahren werden wir hier vorstellen. 1. Wir werden prüfen, ob Vektoren linear abhängig oder linear unabhängig sind (Linearkombinationen hängen damit zusammen) 2. Wir werden Teilverhältnisse bei Strecken und Geraden berechnen ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010661" }
-
Funktionen spiegeln über Formel, Beispiel 5 | A.23.04
Beim Spiegeln von Funktionen an einer senkrechten Gerade der Form x=a, wird in der Funktion f(x) jeder Buchstabe x durch 2a-x ersetzt. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, ist die gesuchte Funktion: g(x)=2b-f(x). Braucht man von einer Funktion die Punktspiegelung an einem Punkt S(a|b), so entspricht das zwei Achsenspiegelungen: nämlich der ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009123" }
-
Funktionen spiegeln über Formel, Beispiel 3 | A.23.04
Beim Spiegeln von Funktionen an einer senkrechten Gerade der Form x=a, wird in der Funktion f(x) jeder Buchstabe x durch 2a-x ersetzt. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, ist die gesuchte Funktion: g(x)=2b-f(x). Braucht man von einer Funktion die Punktspiegelung an einem Punkt S(a|b), so entspricht das zwei Achsenspiegelungen: nämlich der ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009121" }
-
Funktionen spiegeln über Formel | A.23.04
Beim Spiegeln von Funktionen an einer senkrechten Gerade der Form x=a, wird in der Funktion f(x) jeder Buchstabe x durch 2a-x ersetzt. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, ist die gesuchte Funktion: g(x)=2b-f(x). Braucht man von einer Funktion die Punktspiegelung an einem Punkt S(a|b), so entspricht das zwei Achsenspiegelungen: nämlich der ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009118" }