Steigung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Ergebnis der Suche nach: (Freitext: STEIGUNG)

Es wurden 175 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Parallelität von Geraden, Beispiel 1 | A.02.06

    Sind zwei Geraden parallel, so haben sie die gleiche Steigung. Stehen zwei Geraden senkrecht aufeinander, so ist die Steigung der einen der negative Kehrwert der anderen Steigung. (Also wenn die eine Steigung 5 ist, so ist die andere Steigung -1/5). Man nennt die Steigungen dann auch „negativ reziprok“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008368" }

  • Parallelität von Geraden, Beispiel 4 | A.02.06

    Sind zwei Geraden parallel, so haben sie die gleiche Steigung. Stehen zwei Geraden senkrecht aufeinander, so ist die Steigung der einen der negative Kehrwert der anderen Steigung. (Also wenn die eine Steigung 5 ist, so ist die andere Steigung -1/5). Man nennt die Steigungen dann auch „negativ reziprok“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008371" }

  • Parallelität von Geraden | A.02.06

    Sind zwei Geraden parallel, so haben sie die gleiche Steigung. Stehen zwei Geraden senkrecht aufeinander, so ist die Steigung der einen der negative Kehrwert der anderen Steigung. (Also wenn die eine Steigung 5 ist, so ist die andere Steigung -1/5). Man nennt die Steigungen dann auch „negativ reziprok“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008367" }

  • Parallelität von Geraden, Beispiel 2 | A.02.06

    Sind zwei Geraden parallel, so haben sie die gleiche Steigung. Stehen zwei Geraden senkrecht aufeinander, so ist die Steigung der einen der negative Kehrwert der anderen Steigung. (Also wenn die eine Steigung 5 ist, so ist die andere Steigung -1/5). Man nennt die Steigungen dann auch „negativ reziprok“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008369" }

  • Parallelität von Geraden, Beispiel 3 | A.02.06

    Sind zwei Geraden parallel, so haben sie die gleiche Steigung. Stehen zwei Geraden senkrecht aufeinander, so ist die Steigung der einen der negative Kehrwert der anderen Steigung. (Also wenn die eine Steigung 5 ist, so ist die andere Steigung -1/5). Man nennt die Steigungen dann auch „negativ reziprok“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008370" }

  • Lernvideo von HilfreichTV: Steigung eines Graphen berechnen

    In diesem Lernvideo von HilfreichTV wird erklärt, wie man die Steigung eines Graphen berechnet.

    Details  
    { "HE": "DE:HE:2826959" }

  • Lernvideo von HilfreichTV: Steigung eines Graphen berechnen

    In diesem Lernvideo von HilfreichTV wird erklärt, wie man die Steigung eines Graphen berechnet.

    Details  
    { "HE": [] }

  • Steigung berechnen im Steigungsdreieck über Steigungsformel | A.01.02

    Die Steigung (heißt auch „Anstieg“) zwischen zwei Punkten bestimmt man mit der Steigungsformel (im Steigungsdreieck). Diese lautet: m=(y2–y1)/(x2–x1). Hierbei sind x1, x2, y1 und y2 natürlich die Koordinaten der beiden Punkte.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008309" }

  • Steigung berechnen im Steigungsdreieck über Steigungsformel, Beispiel 5 | A.01.02

    Die Steigung (heißt auch „Anstieg“) zwischen zwei Punkten bestimmt man mit der Steigungsformel (im Steigungsdreieck). Diese lautet: m=(y2–y1)/(x2–x1). Hierbei sind x1, x2, y1 und y2 natürlich die Koordinaten der beiden Punkte.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008314" }

  • Steigung berechnen im Steigungsdreieck über Steigungsformel, Beispiel 3 | A.01.02

    Die Steigung (heißt auch „Anstieg“) zwischen zwei Punkten bestimmt man mit der Steigungsformel (im Steigungsdreieck). Diese lautet: m=(y2–y1)/(x2–x1). Hierbei sind x1, x2, y1 und y2 natürlich die Koordinaten der beiden Punkte.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008312" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite