Sinus, Kosinus, Tangens - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Ergebnis der Suche nach: (Freitext: SINUS und KOSINUS und TANGENS)
Es wurden 75 Einträge gefunden
- Treffer:
- 1 bis 10
-
Trigonometrie - Arbeitsblätter
Arbeitsblätter zu folgenden Themen: Berechnung rechtwinkliger Dreiecke mit dem Sinus Berechnung rechtwinkliger Dreiecke mit Cosinus, Tangens und Cotangens Definition der Sinus- und Cosinusfunktion am Einheitskreis
Details { "HE": "DE:HE:113573" }
-
Veranschaulichung von Sinus und Kosinus am Einheitskreis
Auf dieser Seite des Landesbildungsservers Baden-Württemberg wird mithilfe einer Animation in den Sinus und Cosinus am Einheitskreis eingeführt.
Details { "HE": [] }
-
Sinus, Kosinus und Tangens (Mathematik)
Die Winkelfunktionen Sinus, Kosinus und Tangens sind die wichtigsten trigonometrischen Funktionen. Dieser Artikel erklärt an Beispielen, wie man diese Funktionen berechnen kann, was Gegenkathete, Hypotenuse und Ankathete sind und welche Rechenregeln es gibt.
Details { "DBS": "DE:DBS:55956" }
-
Trigonometrische Funktionen: Ableitung, Beispiel 2 | A.42.04
Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009469" }
-
Trigonometrische Funktionen: Ableitung, Beispiel 1 | A.42.04
Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009468" }
-
Trigonometrische Funktionen: Ableitung | A.42.04
Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009467" }
-
Trigonometrische Funktionen: Ableitung, Beispiel 3 | A.42.04
Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009470" }
-
Sinus, Kosinus und Tangens
Eine Einführung der Sinus-, Kosinus-,Tangensfunktion mithilfe eines Java-Applets (Klasse 9 und 10).; Lernressourcentyp: Unterrichtsplanung; Lernmaterial; Arbeitsblatt (interaktiv); Mindestalter: 10; Höchstalter: 14
Details { "DBS": "DE:DBS:52539" }
-
Trigonometrie: was ist das überhaupt? Wie rechnet man damit richtig?
Die Trigonometrie befasst sich mit der Berechnung von Längen und Winkeln in der Ebene (daher heißt die Trigonometrie auch Planimetrie). Üblicherweise erfolgen diese Berechnung mit Hilfe des Satzes von Pythagoras, mit Sinus, Kosinus (teils auch Cosinus), Tangens und anderen trigonometrischen Hilfsmitteln.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010277" }
-
Trigonometrische Funktionen: kurze Einführung | A.42
Trigonometrische Funktionen sind periodisch, wiederholen sich also in regelmäßigen Abständen. Der Abstand, bis es zur nächsten Wiederholung kommt, nennt sich Periode. Die wichtigsten periodischen Funktionen der Trigonometrie sind die Sinus, die Kosinus und die Tangens-Funktion (abgekürzt; sin(x), cos(x), tan(x)). Unwichtige periodische Funktionen sind Kotangens, Sekans ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009451" }