Rauminhalt - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Ergebnis der Suche nach: (Freitext: RAUMINHALT)
Es wurden 25 Einträge gefunden
- Treffer:
- 1 bis 10
-
Körper und Flächen
MSW LOGO Projekt zur Visualisierung von geometrischen Flächen und Körpern und Berechnung von Oberflächeninhalten und Rauminhalten Zur Verwendung im Unterricht an der berufsbildenden Förderschule in den Fächer Mathematik bzw. Technische Mathematik
Details { "SN": "DE:SBS:397" }
-
Hohlmaß
Umrechnen von Maßeinheiten - Hohlmaß
Details { "Select.HE": "DE:Select.HE:857672", "HE": "DE:HE:857672" }
-
Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale; Beispiel 3 | T.06.02
Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010318" }
-
Rauminhalte bis 100 Liter
Auf den Seiten des Mildenberger Verlages Mathe im Netz finden Schülerinnen und Schüler Übungen zum Ordnen und Umwandeln verschiedener Rauminhaltsangaben in ml und l.
Details { "Mauswiesel.HE": "DE:Mauswiesel.HE:1230237" }
-
Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale | T.06.02
Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010315" }
-
Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale; Beispiel 2 | T.06.02
Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010317" }
-
Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale; Beispiel 1 | T.06.02
Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010316" }
-
Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 6 | A.21.02
Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem Alltag. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009040" }
-
Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 3 | A.21.02
Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem Alltag. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009037" }
-
Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel | A.21.02
Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem Alltag. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009034" }