Radius - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (5)

Ergebnis der Suche nach: (Freitext: RADIUS)

Es wurden 76 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite

Treffer:
41 bis 50
  • Abstand Kreis-Kreis berechnen, Beispiel 3 | V.06.06

    Abstand Kreis Kreis: Mal wieder was Einfaches. Man berechnet den Abstand der beiden Mittelpunkte und vergleicht diesen mit der Summe bzw. der Differenz beider Kreisradien. Ist der Abstand der Mittelpunkt größer als die Summe der Radien, liegen die Kreise nebeneinander, der Abstand der Kreise berechnet sich über Abstand der Kreismittelpunkte, abzüglich der beiden Radien. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010546" }

  • Volumen Kegel und Volumen Zylinder berechnen, Beispiel 1 | A.21.05

    Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009052" }

  • Abstand Kugel-Kugel berechnen | V.06.14

    Abstand Kugel-Kugel: Mal wieder was Einfaches. Man berechnet den Abstand der beiden Mittelpunkte und vergleicht diesen mit der Summe bzw. der Differenz beider Kugelradien. Ist der Abstand der Mittelpunkt größer als die Summe der Radien, liegen die Kugeln nebeneinander, der Abstand der Kugeln berechnet sich über Abstand der Kugelmittelpunkte, abzüglich der beiden Radien. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010575" }

  • Abstand Kreis-Kreis berechnen | V.06.06

    Abstand Kreis Kreis: Mal wieder was Einfaches. Man berechnet den Abstand der beiden Mittelpunkte und vergleicht diesen mit der Summe bzw. der Differenz beider Kreisradien. Ist der Abstand der Mittelpunkt größer als die Summe der Radien, liegen die Kreise nebeneinander, der Abstand der Kreise berechnet sich über Abstand der Kreismittelpunkte, abzüglich der beiden Radien. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010543" }

  • Abstand Kugel-Kugel berechnen, Beispiel 3 | V.06.14

    Abstand Kugel-Kugel: Mal wieder was Einfaches. Man berechnet den Abstand der beiden Mittelpunkte und vergleicht diesen mit der Summe bzw. der Differenz beider Kugelradien. Ist der Abstand der Mittelpunkt größer als die Summe der Radien, liegen die Kugeln nebeneinander, der Abstand der Kugeln berechnet sich über Abstand der Kugelmittelpunkte, abzüglich der beiden Radien. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010578" }

  • Volumen Kegel und Volumen Zylinder berechnen | A.21.05

    Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009051" }

  • Abstand Kreis-Kreis berechnen, Beispiel 1 | V.06.06

    Abstand Kreis Kreis: Mal wieder was Einfaches. Man berechnet den Abstand der beiden Mittelpunkte und vergleicht diesen mit der Summe bzw. der Differenz beider Kreisradien. Ist der Abstand der Mittelpunkt größer als die Summe der Radien, liegen die Kreise nebeneinander, der Abstand der Kreise berechnet sich über Abstand der Kreismittelpunkte, abzüglich der beiden Radien. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010544" }

  • Inkugel einer Pyramide berechnen, Beispiel 1 | V.09.06

    Eine Inkugel einer Pyramide ist eine Kugel, die alle Seitenflächen der Pyramide (von innen) berührt. Man stellt zuerst die Gerade auf, die von der Pyramidenspitze zum Mittelpunkt der Grundfläche geht. Diese Gerade schreibt man in Punktform um. Da der Kugelmittelpunkt (aus Symmetriegründen) auf dieser Gerade liegen muss, hat man bereits den Mittelpunkt (wir nennen ihn ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010659" }

  • Kugel berechnen: Kugelvolumen, Kugeloberfläche, Halbkugel; Beispiel 1 | T.06.07

    Kugeln sind rund, gehören also zu den Rundkörpern. Das ist toll! Kugeln sind von der Struktur her, recht einfach. Volumen und Oberfläche berechnet mit je einer Formel, in welche nur der Radius einfließt. Um die Aufgaben etwas anspruchsvoller zu gestalten, hat man es daher oft mit Halbkugeln zu tun oder irgendwelchen Aufgaben, bei denen man um die Ecke denken ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010328" }

  • Schnittpunkt Kugel-Kugel berechnen, Beispiel 3 | V.06.10

    Schnittkreis zweier Kugeln: Beim Schnitt Kugel-Kugel entsteht ein Schnittkreis. Im 3D gibt es keine Gleichung für einen Kreis, also muss man üblicherweise Mittelpunkt und Radius des Schnittkreises berechnen. Dafür wendet man einen Trick an: Man löst ALLE Klammern aus beiden Kugelgleichungen auf (falls sie es nicht schon sind) und zieht die Kugelgleichungen von einander ab. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010562" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite