Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: QUADRATISCHE und GLEICHUNGEN)

Es wurden 109 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 Eine Seite vor Zur letzten Seite

Treffer:
71 bis 80
  • Komplexe Zahlen

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Was komplexe Zahlen sind und wo sie zur Anwendung kommen, erfahren Lehrer und Schüler an dieser Stelle.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004437" }

  • Quadratische Gleichungen mit x und einem weiteren Parameter | G.04.07

    Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum „x“ noch ein weiterer Parameter drin steckt (z.B. noch ein „t“ oder so was). Meist heißt die zugehörige Fragestellung dann: „Für welche Werte von „t“ hat die Gleichung keine, eine oder zwei Lösungen?“. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010094" }

  • Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 2 | G.04.07

    Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum „x“ noch ein weiterer Parameter drin steckt (z.B. noch ein „t“ oder so was). Meist heißt die zugehörige Fragestellung dann: „Für welche Werte von „t“ hat die Gleichung keine, eine oder zwei Lösungen?“. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010096" }

  • Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 4 | G.04.07

    Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum „x“ noch ein weiterer Parameter drin steckt (z.B. noch ein „t“ oder so was). Meist heißt die zugehörige Fragestellung dann: „Für welche Werte von „t“ hat die Gleichung keine, eine oder zwei Lösungen?“. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010098" }

  • Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 5 | G.04.07

    Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum „x“ noch ein weiterer Parameter drin steckt (z.B. noch ein „t“ oder so was). Meist heißt die zugehörige Fragestellung dann: „Für welche Werte von „t“ hat die Gleichung keine, eine oder zwei Lösungen?“. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010099" }

  • Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 3 | G.04.07

    Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum „x“ noch ein weiterer Parameter drin steckt (z.B. noch ein „t“ oder so was). Meist heißt die zugehörige Fragestellung dann: „Für welche Werte von „t“ hat die Gleichung keine, eine oder zwei Lösungen?“. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010097" }

  • Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 6 | G.04.07

    Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum „x“ noch ein weiterer Parameter drin steckt (z.B. noch ein „t“ oder so was). Meist heißt die zugehörige Fragestellung dann: „Für welche Werte von „t“ hat die Gleichung keine, eine oder zwei Lösungen?“. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010100" }

  • Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 1 | G.04.07

    Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum „x“ noch ein weiterer Parameter drin steckt (z.B. noch ein „t“ oder so was). Meist heißt die zugehörige Fragestellung dann: „Für welche Werte von „t“ hat die Gleichung keine, eine oder zwei Lösungen?“. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010095" }

  • Mitternachtsformel, a-b-c-Formel, Beispiel 1 | A.12.04

    Mit der Mitternachtsformel (a-b-c Formel oder auch Lösungsformel) kann man eine quadratische Gleichung lösen, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Um die abc-Formel anwenden zu können, muss auf einer Seite der Gleichung immer „=0“ stehen. Je nach dem, ob die Diskriminante (der Term unter der Wurzel) positiv, negativ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008695" }

  • Mitternachtsformel, a-b-c-Formel, Beispiel 4 | A.12.04

    Mit der Mitternachtsformel (a-b-c Formel oder auch Lösungsformel) kann man eine quadratische Gleichung lösen, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Um die abc-Formel anwenden zu können, muss auf einer Seite der Gleichung immer „=0“ stehen. Je nach dem, ob die Diskriminante (der Term unter der Wurzel) positiv, negativ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008698" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 Eine Seite vor Zur letzten Seite