Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: PYRAMIDE)

Es wurden 82 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Pyramide: was ist eine Pyramide im mathematischen Sinne? | V.07

    Sämtliche Theorien der Vektorgeometrie fließen in Aufgaben zu Pyramiden ein. Eine Aufgabe zu einer Pyramide ist also so eine Art Anwendungsaufgabe in der Vektorgeometrie.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010591" }

  • Wissenskarte: Cheops Pyramide

    Die Wissenskarte der Medienwerkstatt über die Cheops Pyramide beinhaltet Wissenswertes und Interessantes.

    Details  
    { "Mauswiesel.HE": "DE:Mauswiesel.HE:1127606" }

  • Quadratische Pyramide berechnen | T.06.04

    Ein quadratische Pyramide hat als Grundfläche natürlich ein Quadrat und oben ist eine Spitze (wie bei jeder Pyramide und bei jedem Spitzkörper). Liegt die Spitze genau über der Grundfläche, redet man von einer senkrechten quadratischen Pyramide. Diese gehört zu den Körper, denen Sie am häufigsten in Aufgaben begegnen werden. V=1/3*a²*h

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010323" }

  • Quadratische Pyramide berechnen, Beispiel 2 | T.06.04

    Ein quadratische Pyramide hat als Grundfläche natürlich ein Quadrat und oben ist eine Spitze (wie bei jeder Pyramide und bei jedem Spitzkörper). Liegt die Spitze genau über der Grundfläche, redet man von einer senkrechten quadratischen Pyramide. Diese gehört zu den Körper, denen Sie am häufigsten in Aufgaben begegnen werden. V=1/3*a²*h

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010325" }

  • Quadratische Pyramide berechnen, Beispiel 1 | T.06.04

    Ein quadratische Pyramide hat als Grundfläche natürlich ein Quadrat und oben ist eine Spitze (wie bei jeder Pyramide und bei jedem Spitzkörper). Liegt die Spitze genau über der Grundfläche, redet man von einer senkrechten quadratischen Pyramide. Diese gehört zu den Körper, denen Sie am häufigsten in Aufgaben begegnen werden. V=1/3*a²*h

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010324" }

  • Quadratische Pyramide berechnen, Beispiel 3 | T.06.04

    Ein quadratische Pyramide hat als Grundfläche natürlich ein Quadrat und oben ist eine Spitze (wie bei jeder Pyramide und bei jedem Spitzkörper). Liegt die Spitze genau über der Grundfläche, redet man von einer senkrechten quadratischen Pyramide. Diese gehört zu den Körper, denen Sie am häufigsten in Aufgaben begegnen werden. V=1/3*a²*h

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010326" }

  • Dreiseitige Pyramide aus Ebene mit Koordinatenebenen | V.07.01

    Eine Ebene bildet mit den Koordinatenebenen normalerweise eine dreiseitige Pyramide, in welcher drei rechte Winkel auftauchen. Wählt man Grundseite, Höhe, Grundlinie, etc.. geschickt, kann man das Volumen fast im Kopf rechnen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010592" }

  • Dreiseitige Pyramide aus Ebene mit Koordinatenebenen, Beispiel 2 | V.07.01

    Eine Ebene bildet mit den Koordinatenebenen normalerweise eine dreiseitige Pyramide, in welcher drei rechte Winkel auftauchen. Wählt man Grundseite, Höhe, Grundlinie, etc.. geschickt, kann man das Volumen fast im Kopf rechnen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010594" }

  • Dreiseitige Pyramide aus Ebene mit Koordinatenebenen, Beispiel 1 | V.07.01

    Eine Ebene bildet mit den Koordinatenebenen normalerweise eine dreiseitige Pyramide, in welcher drei rechte Winkel auftauchen. Wählt man Grundseite, Höhe, Grundlinie, etc.. geschickt, kann man das Volumen fast im Kopf rechnen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010593" }

  • Dreiseitige Pyramide aus Ebene mit Koordinatenebenen, Beispiel 3 | V.07.01

    Eine Ebene bildet mit den Koordinatenebenen normalerweise eine dreiseitige Pyramide, in welcher drei rechte Winkel auftauchen. Wählt man Grundseite, Höhe, Grundlinie, etc.. geschickt, kann man das Volumen fast im Kopf rechnen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010595" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 Eine Seite vor Zur letzten Seite