Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: PUNKT)

Es wurden 493 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Spiegeln: Punkt spiegeln, Gerade spiegeln, Ebene spiegeln | V.04

    Man kann alles Mögliche spiegeln. Alles wird jedoch auf die drei Basisfälle zurückgeführt: Punkt an Punkt spiegeln, Punkt an Gerade spiegeln und Punkt an Ebene spiegeln und diese wiederum führt man auf Spiegeln Punkt an Punkt zurück. Spiegeln ist nicht so schwer.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010461" }

  • Punkt an Punkt spiegeln | V.04.02

    Es gibt mehrere Möglichkeiten, einen Punkt an einem anderen zu spiegeln. Nehmen wir an, man spiegelt P an S, um den Spiegelpunkt P* zu erhalten. Man schreibt den Punkt P in Vektorform um und zählt den Verbindungsvektor PS zwei mal dazu. Schon ist man fertig. Da S der Symmetriepunkt von P und P* ist, kann man auch die Formel S=(P+P*)/2 nach P* auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010466" }

  • Abstand von Punkt einer Geraden zu Punkt berechnen, Beispiel 2 | V.08.03

    Oft sucht man einen Punkt einer Gerade, der eine bestimmte Bedingung erfüllen soll. Z.B. soll dieser Punkt einen ganz bestimmten Abstand zu einem anderen, gegebenen, Punkt haben. Man schreibt dafür die Gerade in Punktform um (der Punkt enthält leider einen Parameter). Diesen Punkt (mit Parameter) nennt man nun „laufenden Punkt“ einer Gerade oder „Gerade in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010621" }

  • Abstand von Punkt einer Geraden zu Punkt berechnen, Beispiel 1 | V.08.03

    Oft sucht man einen Punkt einer Gerade, der eine bestimmte Bedingung erfüllen soll. Z.B. soll dieser Punkt einen ganz bestimmten Abstand zu einem anderen, gegebenen, Punkt haben. Man schreibt dafür die Gerade in Punktform um (der Punkt enthält leider einen Parameter). Diesen Punkt (mit Parameter) nennt man nun „laufenden Punkt“ einer Gerade oder „Gerade in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010620" }

  • Abstand von Punkt einer Geraden zu Punkt berechnen | V.08.03

    Oft sucht man einen Punkt einer Gerade, der eine bestimmte Bedingung erfüllen soll. Z.B. soll dieser Punkt einen ganz bestimmten Abstand zu einem anderen, gegebenen, Punkt haben. Man schreibt dafür die Gerade in Punktform um (der Punkt enthält leider einen Parameter). Diesen Punkt (mit Parameter) nennt man nun „laufenden Punkt“ einer Gerade oder „Gerade in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010619" }

  • Abstand von Punkt einer Geraden zu Punkt berechnen, Beispiel 3 | V.08.03

    Oft sucht man einen Punkt einer Gerade, der eine bestimmte Bedingung erfüllen soll. Z.B. soll dieser Punkt einen ganz bestimmten Abstand zu einem anderen, gegebenen, Punkt haben. Man schreibt dafür die Gerade in Punktform um (der Punkt enthält leider einen Parameter). Diesen Punkt (mit Parameter) nennt man nun „laufenden Punkt“ einer Gerade oder „Gerade in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010622" }

  • Abstand Punkt Gerade berechnen über laufenden Punkt | V.03.03

    Den Abstand Punkt-Gerade kann man auf mehrere Arten berechnen. Eine der Möglichkeiten ist der Weg über den laufenden Punkt (oder auch fliegenden Punkt wie es heißt). Man schreibt die Gerade dafür in Punktform um, stellt einen Verbindungsvektor von diesem laufenden Punkt zum Ausgangspunkt auf. Das Skalarprodukt von diesem Verbindungsvektor (mitsamt Parameter) mit dem ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010429" }

  • Abstand Punkt Gerade berechnen über laufenden Punkt, Beispiel 2 | V.03.03

    Den Abstand Punkt-Gerade kann man auf mehrere Arten berechnen. Eine der Möglichkeiten ist der Weg über den laufenden Punkt (oder auch fliegenden Punkt wie es heißt). Man schreibt die Gerade dafür in Punktform um, stellt einen Verbindungsvektor von diesem laufenden Punkt zum Ausgangspunkt auf. Das Skalarprodukt von diesem Verbindungsvektor (mitsamt Parameter) mit dem ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010431" }

  • Abstand Punkt Gerade berechnen über laufenden Punkt, Beispiel 3 | V.03.03

    Den Abstand Punkt-Gerade kann man auf mehrere Arten berechnen. Eine der Möglichkeiten ist der Weg über den laufenden Punkt (oder auch fliegenden Punkt wie es heißt). Man schreibt die Gerade dafür in Punktform um, stellt einen Verbindungsvektor von diesem laufenden Punkt zum Ausgangspunkt auf. Das Skalarprodukt von diesem Verbindungsvektor (mitsamt Parameter) mit dem ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010432" }

  • Abstand Punkt Gerade berechnen über laufenden Punkt, Beispiel 1 | V.03.03

    Den Abstand Punkt-Gerade kann man auf mehrere Arten berechnen. Eine der Möglichkeiten ist der Weg über den laufenden Punkt (oder auch fliegenden Punkt wie es heißt). Man schreibt die Gerade dafür in Punktform um, stellt einen Verbindungsvektor von diesem laufenden Punkt zum Ausgangspunkt auf. Das Skalarprodukt von diesem Verbindungsvektor (mitsamt Parameter) mit dem ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010430" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite