Polynom - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (5)
Ergebnis der Suche nach: (Freitext: POLYNOM)
Es wurden 82 Einträge gefunden
- Treffer:
- 41 bis 50
-
Potenzen und Potenzgesetze
Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Potenzieren ist eine wichtige mathematische Rechenoperation, die mit zunehmender Klassenstufe immer wichtiger wird. An dieser ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00004415" }
-
Symmetrie von ganzrationalen Funktionen bestimmen, Beispiel 3 | A.17.01
Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008918" }
-
Polynome über Nullstellen aufstellen | A.46.04
Kennt man die Nullstellen einer Funktion (z.B. x1, x2, x3, ), kann man die Linearfaktorzerlegung der Funktion aufstellen. Also f(x)=a·(x-x1)·(x-x2)·(x-x3)·... Den Parameter a erhält man über die Punktprobe mit einem beliebigen Punkt. Nun hat man die Funktionsgleichung. Falls man möchte, kann man auch noch alle Klammern auflösen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009632" }
-
Funktionen Schaubildern zuordnen, Beispiel 5 | A.27.02
Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009213" }
-
Funktionen Schaubildern zuordnen, Beispiel 6 | A.27.02
Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009214" }
-
Gebrochenrationale Funktionen
Eine geobrochen rationale Funktion ist eine Funktion die sich als Bruch darstellen lässt. Sowohl im Zähler also auch im Nenner steht dabei ein Polynom.
Details { "DBS": "DE:DBS:56044" }
-
Polynome über Nullstellen aufstellen, Beispiel 3 | A.46.04
Kennt man die Nullstellen einer Funktion (z.B. x1, x2, x3, ), kann man die Linearfaktorzerlegung der Funktion aufstellen. Also f(x)=a·(x-x1)·(x-x2)·(x-x3)·... Den Parameter a erhält man über die Punktprobe mit einem beliebigen Punkt. Nun hat man die Funktionsgleichung. Falls man möchte, kann man auch noch alle Klammern auflösen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009635" }
-
Symmetrie von ganzrationalen Funktionen bestimmen, Beispiel 1 | A.17.01
Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008916" }
-
Funktionen Schaubildern zuordnen, Beispiel 1 | A.27.02
Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009209" }
-
Polynomdivision (Mathematik)
Die Polynomdivision ist eine Methode, um Polynome durcheinander zu dividieren, die der schriftlichen Division ähnelt. Der Gedanke dahinter ist derselbe, wie bei der Division und Multiplikation ganzer Zahlen. Sie bietet eine Möglichkeit, ein Polynom höheren Grades zu vereinachen .
Details { "DBS": "DE:DBS:55940" }