Orthogonalität - Unterrichtsmaterial

Ergebnis der Suche nach: (Freitext: ORTHOGONALITÄT)

Es wurden 10 Einträge gefunden


Treffer:
1 bis 10
  • Orthogonalität (Mathematik)

    Bei Orthogonalität handelt es sich um einen Begriff der u.a. in der analytischen Geometrie verwendet wird. Zwei Objekte heißen orthogonal zueinander, wenn sie senkrecht aufeinander stehen.

    Details  
    { "Serlo": "DE:DBS:56069" }

  • Schnittwinkel zwischen Funktionen berechnen | A.22

    Die gegenseitige Lage von zwei Funktionen lässt sich auf zwei wichtige Sonderfälle zurückführen: 1.beide Funktionen berühren sich, 2.beide Funktionen stehen senkrecht aufeinander (sich orthogonal schneiden). Ist beides nicht der Fall, so gibt es irgendeinen Schnittwinkel. (Es kann natürlich auch sein, dass sich beide Funktionen GAR nicht schneiden, das ist aber ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009074" }

  • Analysis 3 | tiefere Einblicke in die Analysis

    Im Hauptkapitel „2 Analysis – Tiefere Einblicke“ behandeln wir Themen, die zwar nicht direkt zur Funktionsanalyse gehören, jedoch völlig regelmäßig als Fragen in Prüfungen und Klausuren mit auftauchen. (Diverse Extremwertaufgaben, zwei Funktionen, die sich berühren oder orthogonal aufeinander stehen, stetig oder differenzierbar sind und viel, viel ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009031" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009075" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 5 | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009080" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 2 | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009077" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 4 | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009079" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 3 | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009078" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 1 | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009076" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 6 | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009081" }