Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: ORTHOGONALITÄT)

Es wurden 11 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Beweis mit Skalarprodukt

    Anhand eines konkreten Beispiels lernen die Schülerinnen und Schüler, wie man mithilfe des Skalarprodukts die Orthogonalität zweier Strecken zeigt.

    Details  
    { "HE": "DE:HE:2790675" }

  • Orthogonalität (Mathematik)

    Bei Orthogonalität handelt es sich um einen Begriff der u.a. in der analytischen Geometrie verwendet wird. Zwei Objekte heißen orthogonal zueinander, wenn sie senkrecht aufeinander stehen.

    Details  
    { "Serlo": "DE:DBS:56069" }

  • Schnittwinkel zwischen Funktionen berechnen | A.22

    Die gegenseitige Lage von zwei Funktionen lässt sich auf zwei wichtige Sonderfälle zurückführen: 1.beide Funktionen berühren sich, 2.beide Funktionen stehen senkrecht aufeinander (sich orthogonal schneiden). Ist beides nicht der Fall, so gibt es irgendeinen Schnittwinkel. (Es kann natürlich auch sein, dass sich beide Funktionen GAR nicht schneiden, das ist aber ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009074" }

  • Analysis 3 | tiefere Einblicke in die Analysis

    Im Hauptkapitel „2 Analysis – Tiefere Einblicke“ behandeln wir Themen, die zwar nicht direkt zur Funktionsanalyse gehören, jedoch völlig regelmäßig als Fragen in Prüfungen und Klausuren mit auftauchen. (Diverse Extremwertaufgaben, zwei Funktionen, die sich berühren oder orthogonal aufeinander stehen, stetig oder differenzierbar sind und viel, viel ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009031" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009075" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 5 | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009080" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 2 | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009077" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 4 | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009079" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 3 | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009078" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 1 | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009076" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite