Nullstelle - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (22)
Ergebnis der Suche nach: (Freitext: NULLSTELLE)
Es wurden 219 Einträge gefunden
- Treffer:
- 211 bis 219
-
Zweite Lösung einer trigonometrischen Gleichung bestimmen, Beispiel 2 | A.42.03
Wenn man eine Gleichung in der Trigonometrie von Hand lösen muss (bzw. mit einem einfachen Taschenrechner), steht man normalerweise irgendwann mal vor dem Problem, dass der Taschenrechner einem eine einzige Lösung liefert. Tatsächlich gibt es jedoch normalerweise schon innerhalb einer einzigen Periode zwei Lösungen. Wie kommt man auf die zweite Lösung? 1.Zuerst löst man ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009465" }
-
Funktion untersuchen auf Definitionsmenge; Definitionslücke; hebbare Lücke; Polstellen | A.52.01
Es geht hier hauptsächlich um gebrochen-rationale Funktionen (Bruchfunktionen). Bei der Berechnung der Polstellen und Definitionslücken treten manchmal Sonderfälle auf. Diese entpuppen sich dann als hebbare Lücke (ein Loch in der Funktion). Um sicher ALLE Sonderfälle zu berücksichtigen, macht man Folgendes: 1. Zuerst zerlegt man Zähler und Nenner in Faktoren ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009671" }
-
Funktion untersuchen auf Definitionsmenge; Definitionslücke; hebbare Lücke; Polstellen, Beispiel 6
Es geht hier hauptsächlich um gebrochen-rationale Funktionen (Bruchfunktionen). Bei der Berechnung der Polstellen und Definitionslücken treten manchmal Sonderfälle auf. Diese entpuppen sich dann als hebbare Lücke (ein Loch in der Funktion). Um sicher ALLE Sonderfälle zu berücksichtigen, macht man Folgendes: 1. Zuerst zerlegt man Zähler und Nenner in Faktoren ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009677" }
-
Funktion untersuchen auf Definitionsmenge; Definitionslücke; hebbare Lücke; Polstellen, Beispiel 2
Es geht hier hauptsächlich um gebrochen-rationale Funktionen (Bruchfunktionen). Bei der Berechnung der Polstellen und Definitionslücken treten manchmal Sonderfälle auf. Diese entpuppen sich dann als hebbare Lücke (ein Loch in der Funktion). Um sicher ALLE Sonderfälle zu berücksichtigen, macht man Folgendes: 1. Zuerst zerlegt man Zähler und Nenner in Faktoren ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009673" }
-
Zweite Lösung einer trigonometrischen Gleichung bestimmen, Beispiel 3 | A.42.03
Wenn man eine Gleichung in der Trigonometrie von Hand lösen muss (bzw. mit einem einfachen Taschenrechner), steht man normalerweise irgendwann mal vor dem Problem, dass der Taschenrechner einem eine einzige Lösung liefert. Tatsächlich gibt es jedoch normalerweise schon innerhalb einer einzigen Periode zwei Lösungen. Wie kommt man auf die zweite Lösung? 1.Zuerst löst man ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009466" }
-
Stetigkeit und Differenzierbarkeit der verschiedenen Funktionstypen | A.25.01
Je nachdem zu welchem Funktionstyp eine Funktion gehört, kann man schon Vermutungen über ihre Stetigkeit und Differenzierbarkeit anstellen. Polynome und Exponentialfunktionen sind im Normalfall immer stetig und differenzierbar. Hat eine Funktion einen Bruch, so gibts im Normalfall an der Stelle eine Definitionslücke (bzw. senkrechte Asymptote bzw. Polstelle bzw. ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009159" }
-
Funktion untersuchen auf Definitionsmenge; Definitionslücke; hebbare Lücke; Polstellen, Beispiel 3
Es geht hier hauptsächlich um gebrochen-rationale Funktionen (Bruchfunktionen). Bei der Berechnung der Polstellen und Definitionslücken treten manchmal Sonderfälle auf. Diese entpuppen sich dann als hebbare Lücke (ein Loch in der Funktion). Um sicher ALLE Sonderfälle zu berücksichtigen, macht man Folgendes: 1. Zuerst zerlegt man Zähler und Nenner in Faktoren ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009674" }
-
Zweite Lösung einer trigonometrischen Gleichung bestimmen, Beispiel 1 | A.42.03
Wenn man eine Gleichung in der Trigonometrie von Hand lösen muss (bzw. mit einem einfachen Taschenrechner), steht man normalerweise irgendwann mal vor dem Problem, dass der Taschenrechner einem eine einzige Lösung liefert. Tatsächlich gibt es jedoch normalerweise schon innerhalb einer einzigen Periode zwei Lösungen. Wie kommt man auf die zweite Lösung? 1.Zuerst löst man ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009464" }
-
Funktion untersuchen auf Definitionsmenge; Definitionslücke; hebbare Lücke; Polstellen, Beispiel 4
Es geht hier hauptsächlich um gebrochen-rationale Funktionen (Bruchfunktionen). Bei der Berechnung der Polstellen und Definitionslücken treten manchmal Sonderfälle auf. Diese entpuppen sich dann als hebbare Lücke (ein Loch in der Funktion). Um sicher ALLE Sonderfälle zu berücksichtigen, macht man Folgendes: 1. Zuerst zerlegt man Zähler und Nenner in Faktoren ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009675" }