Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: NORMALVERTEILUNG)

Es wurden 59 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Normalverteilung

    Auf dieser Seite von serlo.org wird zunächst die Normalverteilung und deren Eigenschaften erklärt. Anschließend wird die Approximation der Binomialverteilung durch die Normalverteilung erläutert. Komplettiert wird die Seite durch zahlreiche Anwendungsaufgaben mit Lösungen. 

    Details  
    { "HE": "DE:HE:2950744" }

  • Was ist schon normal? Binomial- und Normalverteilung - Unterrichtseinheit

    Die Untersuchung von Binomialverteilungen B (n; p) bei wachsendem n führt über den integralen und lokalen Grenzwertsatz zur Approximation der Binomialverteilung durch die Normalverteilung.

    Details  
    { "DBS": "DE:DBS:40799", "LO": "DE:SODIS:de.lehrer-online.694314" }

  • Normalverteilung

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Lehrer und Schüler finden an dieser Stelle an wichtigen Infos rund um das Thema Normalverteilung.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004581" }

  • Was ist schon normal? - von der Binomial- zur Normalverteilung

    Die Untersuchung von Binomialverteilungen führt über den integralen und lokalen Grenzwertsatz zu ihrer Approximation durch die Normalverteilung (Sek II).; Lernressourcentyp: Lernmaterial; Arbeitsblatt (interaktiv); Mindestalter: 15; Höchstalter: 18

    Details  
    { "DBS": "DE:DBS:53287" }

  • Normalverteilung: was ist das und wie rechnet man damit richtig | W.18

    Die Mehrzahl der zufälligen Ereignisse im Universum sind normalverteilt. Diese Verteilung wird durch eine Funktion beschrieben, durch die Gaußsche Glockenkurve (das ist nichts Anzügliches). Das Schöne daran ist, dass man (um diese Funktion aufzustellen) nur den Erwartungswert und die Standardabweichung braucht. Man verwendet die Normalverteilung nur bei stetigen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010816" }

  • Was ist schon normal? Binomial- und Normalverteilung

    In dieser Unterrichtseinheit zum Thema Wahrscheinlichkeitsverteilungen lernen die Schülerinnen und Schüler über interaktive GeoGebra-Arbeitsblätter die Entwicklung der Normalverteilung als Näherung der Binomialverteilung kennen.

    Details  
    { "LO": "DE:LO:de.lehrer-online.694314" }

  • Standardnormalverteilung: was das ist und wie man damit rechnet, Beispiel 4 | W.18.02

    Die Standard-Normal-Verteilung (=SNV) ist eine besondere Verteilung: Der Mittelwert der SNV ist immer Null, die gesamte Fläche zwischen der zugehörigen Funktion und der x-Achse ist 1. Natürlich beschreibt die Funktion der SNV die Gaußsche Glockenkurve (so wie jede Normalverteilung auch).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010824" }

  • Standardnormalverteilung: was das ist und wie man damit rechnet, Beispiel 2 | W.18.02

    Die Standard-Normal-Verteilung (=SNV) ist eine besondere Verteilung: Der Mittelwert der SNV ist immer Null, die gesamte Fläche zwischen der zugehörigen Funktion und der x-Achse ist 1. Natürlich beschreibt die Funktion der SNV die Gaußsche Glockenkurve (so wie jede Normalverteilung auch).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010822" }

  • Standardnormalverteilung: was das ist und wie man damit rechnet, Beispiel 1 | W.18.02

    Die Standard-Normal-Verteilung (=SNV) ist eine besondere Verteilung: Der Mittelwert der SNV ist immer Null, die gesamte Fläche zwischen der zugehörigen Funktion und der x-Achse ist 1. Natürlich beschreibt die Funktion der SNV die Gaußsche Glockenkurve (so wie jede Normalverteilung auch).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010821" }

  • Standardnormalverteilung: was das ist und wie man damit rechnet | W.18.02

    Die Standard-Normal-Verteilung (=SNV) ist eine besondere Verteilung: Der Mittelwert der SNV ist immer Null, die gesamte Fläche zwischen der zugehörigen Funktion und der x-Achse ist 1. Natürlich beschreibt die Funktion der SNV die Gaußsche Glockenkurve (so wie jede Normalverteilung auch).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010820" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 Eine Seite vor Zur letzten Seite