Logarithmus - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (3)
Ergebnis der Suche nach: (Freitext: LOGARITHMUS)
Es wurden 144 Einträge gefunden
- Treffer:
- 21 bis 30
-
Logarithmusfunktion ableiten, Beispiel 3 | A.44.02
Die Ableitung einer ln-Funktion erhält man, in dem man das Argument des Logarithmus in den Nenner setzt. (Also 1 durch Argument). Hinter den Bruch muss natürlich noch die innere Ableitung gesetzt werden, man wendet demnach die Kettenregel an.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009545" }
-
Komplexer Logarithmus und sonstige Probleme zu komplexen Zahlen, Beispiel 4 | A.54.07
In Verbindung mit komplexen Zahlen tauchen öfter Aufgaben und Problemchen auf, für die keine besondere Theorie notwendig ist. Z.B. ist das der komplexe Logarithmus oder Produkte aus komplexen Zahlen und e-Termen. Was auch immer Sie begegnen: versuchen Sie alles in kartesische Form umzuwandeln oder noch besser: alles in Polarform.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009763" }
-
Komplexer Logarithmus und sonstige Probleme zu komplexen Zahlen | A.54.07
In Verbindung mit komplexen Zahlen tauchen öfter Aufgaben und Problemchen auf, für die keine besondere Theorie notwendig ist. Z.B. ist das der komplexe Logarithmus oder Produkte aus komplexen Zahlen und e-Termen. Was auch immer Sie begegnen: versuchen Sie alles in kartesische Form umzuwandeln oder noch besser: alles in Polarform.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009759" }
-
Komplexer Logarithmus und sonstige Probleme zu komplexen Zahlen, Beispiel 2 | A.54.07
In Verbindung mit komplexen Zahlen tauchen öfter Aufgaben und Problemchen auf, für die keine besondere Theorie notwendig ist. Z.B. ist das der komplexe Logarithmus oder Produkte aus komplexen Zahlen und e-Termen. Was auch immer Sie begegnen: versuchen Sie alles in kartesische Form umzuwandeln oder noch besser: alles in Polarform.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009761" }
-
Logarithmusfunktion ableiten, Beispiel 2 | A.44.02
Die Ableitung einer ln-Funktion erhält man, in dem man das Argument des Logarithmus in den Nenner setzt. (Also 1 durch Argument). Hinter den Bruch muss natürlich noch die innere Ableitung gesetzt werden, man wendet demnach die Kettenregel an.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009544" }
-
Logarithmusfunktion ableiten | A.44.02
Die Ableitung einer ln-Funktion erhält man, in dem man das Argument des Logarithmus in den Nenner setzt. (Also 1 durch Argument). Hinter den Bruch muss natürlich noch die innere Ableitung gesetzt werden, man wendet demnach die Kettenregel an.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009542" }
-
Logarithmus (Mathematik)
Der Logarithmus zu einer Basis a ist die Umkehrfunktion von a^x.
Details { "DBS": "DE:DBS:55949" }
-
Der Logarithmus und die Logarithmengesetze
In diesem Lernvideo von echteinfach.tv wird der Begriff Logarithmus zunächst erklärt. Anschließend werden die Herleitungen der ersten beiden Logarithmengesetze anhand konkreter Beispiele beschrieben.
Details { "Select.HE": "DE:Select.HE:1565428" }
-
Logarithmus-Funktion integrieren bzw. Stammfunktion bilden | A.14.04
Einen ganz bestimmten Typ von Funktionen, kann man mit den normalen Integrationsregeln nicht bearbeiten. Es um Brüche, die oben nur eine Zahl stehen haben, unten einen Term der Form: m*x+b und KEINE Hochzahl. In diesem Fall ist das wesentliche Element der Stammfunktion der ln (Logarithmus zu Basis e).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008835" }
-
Logarithmusfunktion: waagerechte / senkrechte Asymptote und Grenzwert berechnen, Beispiel 4 | A.44.6
Fast jede ln-Funktion hat eine senkrechte Asymptote, die wenigsten haben jedoch waagerechte oder schiefe Asymptoten. Man braucht die Definitionsmenge und lässt nun x gegen die beiden Grenzen dieser Definitionsmenge laufen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009564" }