Lineare Ungleichung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Ergebnis der Suche nach: (Freitext: LINEARE und UNGLEICHUNG)
Es wurden 10 Einträge gefunden
- Treffer:
- 1 bis 10
-
Lineare Ungleichungen | A.26.01
Eine lineare Ungleichung ist eine Ungleichung, in der nur x vorkommt. Kein x² oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich Kleinerzeichen oder ein Größerzeichen. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein x hat, kommt auf die linke Seite, alles ohne x auf die rechte Seite. Teilt man durch etwas ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009173" }
-
Lineare Ungleichungen, Beispiel 2 | A.26.01
Eine lineare Ungleichung ist eine Ungleichung, in der nur x vorkommt. Kein x² oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich Kleinerzeichen oder ein Größerzeichen. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein x hat, kommt auf die linke Seite, alles ohne x auf die rechte Seite. Teilt man durch etwas ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009175" }
-
Lineare Ungleichungen, Beispiel 6 | A.26.01
Eine lineare Ungleichung ist eine Ungleichung, in der nur x vorkommt. Kein x² oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich Kleinerzeichen oder ein Größerzeichen. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein x hat, kommt auf die linke Seite, alles ohne x auf die rechte Seite. Teilt man durch etwas ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009179" }
-
Lineare Ungleichungen, Beispiel 4 | A.26.01
Eine lineare Ungleichung ist eine Ungleichung, in der nur x vorkommt. Kein x² oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich Kleinerzeichen oder ein Größerzeichen. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein x hat, kommt auf die linke Seite, alles ohne x auf die rechte Seite. Teilt man durch etwas ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009177" }
-
Lineare Ungleichungen, Beispiel 3 | A.26.01
Eine lineare Ungleichung ist eine Ungleichung, in der nur x vorkommt. Kein x² oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich Kleinerzeichen oder ein Größerzeichen. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein x hat, kommt auf die linke Seite, alles ohne x auf die rechte Seite. Teilt man durch etwas ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009176" }
-
Lineare Ungleichungen, Beispiel 1 | A.26.01
Eine lineare Ungleichung ist eine Ungleichung, in der nur x vorkommt. Kein x² oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich Kleinerzeichen oder ein Größerzeichen. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein x hat, kommt auf die linke Seite, alles ohne x auf die rechte Seite. Teilt man durch etwas ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009174" }
-
Lineare Ungleichungen, Beispiel 5 | A.26.01
Eine lineare Ungleichung ist eine Ungleichung, in der nur x vorkommt. Kein x² oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich Kleinerzeichen oder ein Größerzeichen. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein x hat, kommt auf die linke Seite, alles ohne x auf die rechte Seite. Teilt man durch etwas ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009178" }
-
Arbeitsblätter zu Ungleichungen
Arbeitsblätter mit differenzierten Alltagsaufgaben, an denen das Lösen von Ungleichungen geübt werden kann.
Details { "Select.HE": "DE:Select.HE:1114491" }
-
Ungleichungen umformen (Mathematik)
Als Umformen einer Ungleichung bezeichnet man das Ändern ihres Aussehens, ohne ihren Wahrheitswert zu verändern.Grundregeln der Umformung von Ungleichungen Man kann die gleichen Umformungen machen wie bei einer Gleichung , allerdings muss man bei der Multiplikation und bei der Division auf ...
Details { "DBS": "DE:DBS:56171" }
-
Substitution
Als Substitution bezeichnet man, wenn in einem Term ein Teil durch einen neuen Term (z.B. z) ersetzt wird.
Details { "DBS": "DE:DBS:56102" }