Kreisgleichung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Ergebnis der Suche nach: (Freitext: KREISGLEICHUNG)
Es wurden 14 Einträge gefunden
- Treffer:
- 1 bis 10
-
Kreisgleichung, Beispiel 2 | V.06.01
Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei m1 und m2 die Koordinaten des Mittelpunktes sind und r natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010525" }
-
Kreisgleichung | V.06.01
Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei m1 und m2 die Koordinaten des Mittelpunktes sind und r natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010523" }
-
Kreisgleichung, Beispiel 3 | V.06.01
Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei m1 und m2 die Koordinaten des Mittelpunktes sind und r natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010526" }
-
Kreisgleichung, Beispiel 1 | V.06.01
Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei m1 und m2 die Koordinaten des Mittelpunktes sind und r natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010524" }
-
Kreis und Kugel berechnen mit Kreisgleichung und Kugelgleichung | V.06
Eine Kreisgleichung lautet: (x1-m1)^2+(x2-m2)^2=r^2 und eine Kugelgleichung lautet: (x1-m1)^2+(x2-m2)^2+(x3-m3)^2=r^2. Man kann ganz viele, lustige Sachen damit machen. Bemerkung: Ein Kreis oder eine Kugel ist in Mathe immer ein Hohlkreis bzw. eine Hohlkugel (das Innere gehört also nie dazu).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010522" }
-
Der Kreis
In diesem pdf-Dokument von mathe-online.at wird zunächst die Kreisgleichung erläutert, dann wird die Berührbedingung von Kreis und Gerade hergeleitet, schließlich folgt die Tangentengleichung.
Details { "HE": [] }
-
Schnittpunkt Gerade-Kreis berechnen | V.06.02
Schnitt Gerade Kreis: Schneidet man beides, erhält man normalerweise zwei Punkte [Die Gerade heißt dann Sekante]. Falls die Gerade die Gerade berührt, hat man einen einzigen Schnittpunkt [es wäre ein Berührpunkt, die Gerade heißt dann Tangente]. Falls die Gerade am Kreis vorbeiläuft gibt es natürlich keinen Schnittpunkt [die Gerade heißt Passante]. Rechnerisch geht es ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010527" }
-
Schnittpunkt Gerade-Kugel berechnen | V.06.08
Schnittpunkt einer Gerade mit einem Kreis: Schneidet man beides, erhält man normalerweise zwei Punkte [Die Gerade heißt dann Sekante]. Falls die Gerade die Gerade berührt, hat man einen einzigen Schnittpunkt [es wäre ein Berührpunkt, die Gerade heißt dann Tangente]. Falls die Gerade am Kreis vorbeiläuft gibt es natürlich keinen Schnittpunkt [die Gerade heißt ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010551" }
-
Schnittpunkt Gerade-Kugel berechnen, Beispiel 3 | V.06.08
Schnittpunkt einer Gerade mit einem Kreis: Schneidet man beides, erhält man normalerweise zwei Punkte [Die Gerade heißt dann Sekante]. Falls die Gerade die Gerade berührt, hat man einen einzigen Schnittpunkt [es wäre ein Berührpunkt, die Gerade heißt dann Tangente]. Falls die Gerade am Kreis vorbeiläuft gibt es natürlich keinen Schnittpunkt [die Gerade heißt ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010554" }
-
Schnittpunkt Gerade-Kugel berechnen, Beispiel 2 | V.06.08
Schnittpunkt einer Gerade mit einem Kreis: Schneidet man beides, erhält man normalerweise zwei Punkte [Die Gerade heißt dann Sekante]. Falls die Gerade die Gerade berührt, hat man einen einzigen Schnittpunkt [es wäre ein Berührpunkt, die Gerade heißt dann Tangente]. Falls die Gerade am Kreis vorbeiläuft gibt es natürlich keinen Schnittpunkt [die Gerade heißt ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010553" }