Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: KRÜMMUNG)

Es wurden 20 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Krümmung berechnen mit der 2. Ableitung der Funktionsgleichung f''(x) , Beispiel 1 | A.11.03

    Krümmung berechnen: Setzt man einen x-Wert in die zweite Ableitung f'(x) ein, kann man die Krümmung der Funktion berechnen in diesem Punkt. Ist das Ergebnis der zweiten Ableitung positiv, so handelt es sich um eine Linkskurve. Ist das Ergebnis negativ, so ist die Funktion rechtsgekrümmt. Bei anwendungsorientierten Funktionen hat f''(x) meist keine besondere ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008633" }

  • Krümmung berechnen mit der 2. Ableitung der Funktionsgleichung f''(x) | A.11.03

    Krümmung berechnen: Setzt man einen x-Wert in die zweite Ableitung f'(x) ein, kann man die Krümmung der Funktion berechnen in diesem Punkt. Ist das Ergebnis der zweiten Ableitung positiv, so handelt es sich um eine Linkskurve. Ist das Ergebnis negativ, so ist die Funktion rechtsgekrümmt. Bei anwendungsorientierten Funktionen hat f''(x) meist keine besondere ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008632" }

  • Krümmung berechnen mit der 2. Ableitung der Funktionsgleichung f''(x) , Beispiel 3 | A.11.03

    Krümmung berechnen: Setzt man einen x-Wert in die zweite Ableitung f'(x) ein, kann man die Krümmung der Funktion berechnen in diesem Punkt. Ist das Ergebnis der zweiten Ableitung positiv, so handelt es sich um eine Linkskurve. Ist das Ergebnis negativ, so ist die Funktion rechtsgekrümmt. Bei anwendungsorientierten Funktionen hat f''(x) meist keine besondere ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008635" }

  • Krümmung berechnen mit der 2. Ableitung der Funktionsgleichung f''(x) , Beispiel 2 | A.11.03

    Krümmung berechnen: Setzt man einen x-Wert in die zweite Ableitung f'(x) ein, kann man die Krümmung der Funktion berechnen in diesem Punkt. Ist das Ergebnis der zweiten Ableitung positiv, so handelt es sich um eine Linkskurve. Ist das Ergebnis negativ, so ist die Funktion rechtsgekrümmt. Bei anwendungsorientierten Funktionen hat f''(x) meist keine besondere ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008634" }

  • Krümmung berechnen mit der 2. Ableitung der Funktionsgleichung f''(x) , Beispiel 4 | A.11.03

    Krümmung berechnen: Setzt man einen x-Wert in die zweite Ableitung f'(x) ein, kann man die Krümmung der Funktion berechnen in diesem Punkt. Ist das Ergebnis der zweiten Ableitung positiv, so handelt es sich um eine Linkskurve. Ist das Ergebnis negativ, so ist die Funktion rechtsgekrümmt. Bei anwendungsorientierten Funktionen hat f''(x) meist keine besondere ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008636" }

  • Einstein-Basics: Die Allgemeine Relativitätstheorie - Was ist Krümmung?

    Sprechertext des Films.

    Details  
    { "MELT": "DE:SODIS:MELT-04602325.13" }

  • Experimente zur raumzeitlichen Krümmung mit Alltagsgegenständen

    Viele Gegenstände aus dem Alltag eignen sich zur Darstellung der allgemeinen Relativitätstheorie oder Kosmologie. Im WIS-Beitrag finden sie eine Einkaufsliste und eine Anleitung, wie sie mit Gummibändern, Luftballons und verschiedenen Metermaßen raumzeitliche und räumliche Krümmung, sowie Abstandsmaße in Experimenten mit ihren Schülern richtig ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00003148" }

  • Einstein-Basics: Die Allgemeine Relativitätstheorie - Was ist Krümmung?


    Details  
    { "MELT": "DE:SODIS:MELT-04602325.6" }

  • Krümmung eines Funktionsgraphen

    Meist interessiert man sich für die Krümmung bestimmter Abschnitte des Graphen. Dazu betrachtet man die zweite Ableitung.

    Details  
    { "Serlo": "DE:DBS:55998" }

  • Wendepunkt

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier erfahren Lehrer und Schüler, wann eine Wendepunkt vorliegt und wie man ihn berechnet.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004502" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite