Koordinate - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Ergebnis der Suche nach: (Freitext: KOORDINATE)

Es wurden 605 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Graph einer Funktion (Mathematik)

    Der Graph G_f einer Funktion ist ihre graphische Repräsentation in der Ebene. Er kann formal als die Menge von Punkten gesehen werden, bei denen die x-Koordinate aus dem Definitionsbereich der Funktion ist und die y-Koordinate der Funktionswert der x-Koordinate.

    Details  
    { "DBS": "DE:DBS:56095" }

  • Koordinaten: so kann man eine Koordinate berechnen, Beispiel 1 | A.02.04

    Wie prüft man, ob ein Punkt auf einer Gerade liegt? Sehr einfach: man macht eine Punktprobe, man setzt die also Koordinaten des Punktes in die Gerade ein. Also den x-Wert des Punktes setzt man für x ein, den y-Wert des Punktes setzt man in die Geradengleichung für y ein. Erhält man zum Schluss eine wahre Aussage (so was wie 0=0 oder 5=5 oder ) so liegt der Punkt auf der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008359" }

  • Koordinaten: so kann man eine Koordinate berechnen | A.02.04

    Wie prüft man, ob ein Punkt auf einer Gerade liegt? Sehr einfach: man macht eine Punktprobe, man setzt die also Koordinaten des Punktes in die Gerade ein. Also den x-Wert des Punktes setzt man für x ein, den y-Wert des Punktes setzt man in die Geradengleichung für y ein. Erhält man zum Schluss eine wahre Aussage (so was wie 0=0 oder 5=5 oder ) so liegt der Punkt auf der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008358" }

  • Koordinaten: so kann man eine Koordinate berechnen, Beispiel 3 | A.02.04

    Wie prüft man, ob ein Punkt auf einer Gerade liegt? Sehr einfach: man macht eine Punktprobe, man setzt die also Koordinaten des Punktes in die Gerade ein. Also den x-Wert des Punktes setzt man für x ein, den y-Wert des Punktes setzt man in die Geradengleichung für y ein. Erhält man zum Schluss eine wahre Aussage (so was wie 0=0 oder 5=5 oder ) so liegt der Punkt auf der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008361" }

  • Koordinaten: so kann man eine Koordinate berechnen, Beispiel 2 | A.02.04

    Wie prüft man, ob ein Punkt auf einer Gerade liegt? Sehr einfach: man macht eine Punktprobe, man setzt die also Koordinaten des Punktes in die Gerade ein. Also den x-Wert des Punktes setzt man für x ein, den y-Wert des Punktes setzt man in die Geradengleichung für y ein. Erhält man zum Schluss eine wahre Aussage (so was wie 0=0 oder 5=5 oder ) so liegt der Punkt auf der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008360" }

  • Koordinaten: so kann man eine Koordinate berechnen, Beispiel 4 | A.02.04

    Wie prüft man, ob ein Punkt auf einer Gerade liegt? Sehr einfach: man macht eine Punktprobe, man setzt die also Koordinaten des Punktes in die Gerade ein. Also den x-Wert des Punktes setzt man für x ein, den y-Wert des Punktes setzt man in die Geradengleichung für y ein. Erhält man zum Schluss eine wahre Aussage (so was wie 0=0 oder 5=5 oder ) so liegt der Punkt auf der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008362" }

  • Beispielaufgaben zu Nullstellen berechnen und Gleichungen lösen, Beispiel 3 | A.12.09

    Hier gibt es ein paar vermischte Aufgaben zu den vorhergehenden Kapiteln, also zum Thema „Nullstellen“ bzw. „Gleichungen lösen“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008750" }

  • Polynomdivision, Beispiel 1 | A.12.07

    Polynomdivision (oder Horner-Schema) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil der Polynomdivision ist der, dass man bereits eine Nullstelle braucht - die man eventuell durch Raten erhalten kann.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008734" }

  • Beispielaufgaben zu Nullstellen berechnen und Gleichungen lösen, Beispiel 4 | A.12.09

    Hier gibt es ein paar vermischte Aufgaben zu den vorhergehenden Kapiteln, also zum Thema „Nullstellen“ bzw. „Gleichungen lösen“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008751" }

  • Beispielaufgaben zu Nullstellen berechnen und Gleichungen lösen, Beispiel 1 | A.12.09

    Hier gibt es ein paar vermischte Aufgaben zu den vorhergehenden Kapiteln, also zum Thema „Nullstellen“ bzw. „Gleichungen lösen“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008748" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite