Koeffizient - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Ergebnis der Suche nach: (Freitext: KOEFFIZIENT)

Es wurden 16 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Der Gini-Koeffizient

    Ein Maß, um die Verteilung in einem Land deutlich zu machen, ist der Gini-Koeffizient. Damit fassen Statistiker das soziale Gefälle in eine Zahl (Wirtschaft und Schule 2020).

    Details  
    { "HE": [] }

  • Gini-Ko­ef­fi­zi­ent der Ein­kom­men

    Der Gini-Koeffizient der Einkommen misst die Ungleichverteilung der realen Haushaltseinkommen in Deutschland (2020).

    Details  
    { "HE": [] }

  • Parameter und Koeffizient (Mathematik)

    Ein Parameter, meist als a, b oder k benannt, ist ähnlich einer Variablen nicht auf einen bestimmten Wert festgelegt. Trotzdem wird mit ihm wie mit einem festen Wert gerechnet. Ein Parameter steht fast immer in direkter Verbindung mit einer Variablen.

    Details  
    { "DBS": "DE:DBS:55979" }

  • Satz von Vieta

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Dieser Link führt Sie zu einer Erläuterung des Satzes von Vieta.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004443" }

  • Potenzen und Potenzgesetze

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Potenzieren ist eine wichtige mathematische Rechenoperation, die mit zunehmender Klassenstufe immer wichtiger wird. An dieser ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004415" }

  • Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 3 | A.53.05

    Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die „spezielle Lösung“ oder „partikuläre Lösung“ zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009719" }

  • DGL höherer Ordnung über charakteristisches Polynom lösen | A.53.04

    Bei einer homogenen DGL höherer Ordnung sind die Lösungen des charakteristischen Polynoms entscheidend. Das charakteristische Polynom erhält man, in dem man in der DGL f' durch x ersetzt, f'' durch x^2, f''' durch x^3, usw. Diese Gleichung löst man (oft nicht einfach) und betrachtet die Lösungen. Der Lösungsansatz hängt von zwei Faktoren ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009711" }

  • DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 1 | A.53.04

    Bei einer homogenen DGL höherer Ordnung sind die Lösungen des charakteristischen Polynoms entscheidend. Das charakteristische Polynom erhält man, in dem man in der DGL f' durch x ersetzt, f'' durch x^2, f''' durch x^3, usw. Diese Gleichung löst man (oft nicht einfach) und betrachtet die Lösungen. Der Lösungsansatz hängt von zwei Faktoren ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009712" }

  • DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 3 | A.53.04

    Bei einer homogenen DGL höherer Ordnung sind die Lösungen des charakteristischen Polynoms entscheidend. Das charakteristische Polynom erhält man, in dem man in der DGL f' durch x ersetzt, f'' durch x^2, f''' durch x^3, usw. Diese Gleichung löst man (oft nicht einfach) und betrachtet die Lösungen. Der Lösungsansatz hängt von zwei Faktoren ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009714" }

  • Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 1 | A.53.05

    Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die „spezielle Lösung“ oder „partikuläre Lösung“ zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009717" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite