Kegelschnitt - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (3)
Ergebnis der Suche nach: (Freitext: KEGELSCHNITT)
Es wurden 26 Einträge gefunden
- Treffer:
- 21 bis 26
-
Hyperbel / Hyperbeln berechnen, Beispiel 3 | A.06.02
Eine Funktion, die im Nenner (unten) eines Bruchs ein x stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind 1/x, 1/x²,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008592" }
-
Schaubilder von Funktionen: Sinus-Funktion / Kosinus-Funktion | A.27.01
Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009202" }
-
Polynome, Parabeln höherer Ordnung, ganzrationale Funktionen, Beispiel 4 | A.06.01
Polynome heißen auch ganzrationale Funktionen oder Parabeln höherer Ordnung. Während man unter Parabel normalerweise eine quadratische Parabel versteht (y=ax²+bx+c) versteht man unter einer Parabel dritten Grades bzw. Parabel dritter Ordnung eine Funktion mit x hoch 3 (y=ax³+bx²+cx+d). Mit Parabel vierter Ordnung ist eine Funktion gemeint, in ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008588" }
-
Polynome, Parabeln höherer Ordnung, ganzrationale Funktionen: wie rechnet man damit? | A.06.01
Polynome heißen auch ganzrationale Funktionen oder Parabeln höherer Ordnung. Während man unter Parabel normalerweise eine quadratische Parabel versteht (y=ax²+bx+c) versteht man unter einer Parabel dritten Grades bzw. Parabel dritter Ordnung eine Funktion mit x hoch 3 (y=ax³+bx²+cx+d). Mit Parabel vierter Ordnung ist eine Funktion gemeint, in ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008584" }
-
Polynome, Parabeln höherer Ordnung, ganzrationale Funktionen, Beispiel 2 | A.06.01
Polynome heißen auch ganzrationale Funktionen oder Parabeln höherer Ordnung. Während man unter Parabel normalerweise eine quadratische Parabel versteht (y=ax²+bx+c) versteht man unter einer Parabel dritten Grades bzw. Parabel dritter Ordnung eine Funktion mit x hoch 3 (y=ax³+bx²+cx+d). Mit Parabel vierter Ordnung ist eine Funktion gemeint, in ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008586" }
-
Polynome, Parabeln höherer Ordnung, ganzrationale Funktionen, Beispiel 3 | A.06.01
Polynome heißen auch ganzrationale Funktionen oder Parabeln höherer Ordnung. Während man unter Parabel normalerweise eine quadratische Parabel versteht (y=ax²+bx+c) versteht man unter einer Parabel dritten Grades bzw. Parabel dritter Ordnung eine Funktion mit x hoch 3 (y=ax³+bx²+cx+d). Mit Parabel vierter Ordnung ist eine Funktion gemeint, in ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008587" }