Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: INVERSION)

Es wurden 28 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Die Alpen - Inversion und Kaltluftseen


    Details  
    { "MELT": "DE:SODIS:MELT-06600200.083" }

  • DynaGeo: Konstruktion des Bildpunktes bei der Inversion am Kreis

    Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00002866" }

  • DynaGeo: Inversion einer Parabel am Kreis

    Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00002868" }

  • Die Alpen - Temperaturinversion


    Details  
    { "MELT": "DE:SODIS:MELT-06600200.489" }

  • Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion | A.28.02

    Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte“.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009239" }

  • Unser Lebensmittel Luft - Inversionsmodell

    Bei diesem Experiment wird in einem Landschaftsmodell eine Inversionsschicht der Luft erzeugt. Ziel ist es zu erkenne, warum Becken- und Tallandschaften im Bezug auf Schadstoffausbreitungen benachteiligt sind.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00012482" }

  • Umkehrfunktion berechnen, Beispiel 6 | A.28.01

    Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach „x“ auf. Hat man das getan, kann man das bisherige „x“ nun „y“ nennen, das bisherige „y“ nennt man „x“ und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009236" }

  • Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 2 | A.28.02

    Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte“.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009241" }

  • Umkehrfunktion berechnen, Beispiel 1 | A.28.01

    Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach „x“ auf. Hat man das getan, kann man das bisherige „x“ nun „y“ nennen, das bisherige „y“ nennt man „x“ und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009231" }

  • Umkehrfunktion berechnen, Beispiel 2 | A.28.01

    Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach „x“ auf. Hat man das getan, kann man das bisherige „x“ nun „y“ nennen, das bisherige „y“ nennt man „x“ und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009232" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite