Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: HÖHE)

Es wurden 141 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Geradengleichung der Höhe berechnen, Beispiel 2 | A.02.13

    Wie berechnet man die Gleichung einer Höhe? Eine Höhe steht senkrecht auf einer Dreiecksseite und geht durch den gegenüber liegenden Punkt. Dadurch, dass die Höhe senkrecht auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert, denn dadurch, dass beide senkrecht aufeinander ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008409" }

  • Geradengleichung der Höhe berechnen, Beispiel 3 | A.02.13

    Wie berechnet man die Gleichung einer Höhe? Eine Höhe steht senkrecht auf einer Dreiecksseite und geht durch den gegenüber liegenden Punkt. Dadurch, dass die Höhe senkrecht auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert, denn dadurch, dass beide senkrecht aufeinander ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008410" }

  • Geradengleichung der Höhe berechnen, Beispiel 1 | A.02.13

    Wie berechnet man die Gleichung einer Höhe? Eine Höhe steht senkrecht auf einer Dreiecksseite und geht durch den gegenüber liegenden Punkt. Dadurch, dass die Höhe senkrecht auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert, denn dadurch, dass beide senkrecht aufeinander ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008408" }

  • Geradengleichung der Höhe berechnen | A.02.13

    Wie berechnet man die Gleichung einer Höhe? Eine Höhe steht senkrecht auf einer Dreiecksseite und geht durch den gegenüber liegenden Punkt. Dadurch, dass die Höhe senkrecht auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert, denn dadurch, dass beide senkrecht aufeinander ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008407" }

  • Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen, Beispiel 3 | A.03.02

    Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008445" }

  • Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen, Beispiel 2 | A.03.02

    Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008444" }

  • Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen, Beispiel 1 | A.03.02

    Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008443" }

  • Volumen dreiseitige Pyramide berechnen | V.07.03

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das ist ein ziemliches Rumgerechne. Die Grundfläche berechnet sich über A=1/2*g*h. Die Grundlinie berechnet man über Abstand Punkt-Punkt. Die Höhe des Dreiecks berechnet man über Abstand Punkt-Gerade. Die Höhe der Pyramide berechnet man über ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010601" }

  • Fallturm und Parabelflug

    Parabelflüge Joachim Herz Stiftung Von einem normalen, horizontalen Flug in ca. 5000m Höhe steigt die Maschine für etwa 20s unter einem Winkel von 50o an entry pull up . Dann wird, in einer Höhe von ca. 6300m, der

    Details  
    { "LEIFI": "DE:LEIFI:8671" }

  • Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen | A.03.02

    Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008442" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite