Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: GERADEN und EBENEN)

Es wurden 31 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Vektorgeometrie Grundlagen: Punkte, Geraden, Ebenen und mehr | V.01

    Allgemeine Grundlagen der Vektorgeometrie rund um Punkte, Geraden und Ebenen. Geraden und Ebenen aufstellen, Ebenenformen umwandeln, etc..

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010345" }

  • Lagebeziehungen von Geraden und Ebenen

    Geraden können im Raum auf unterschiedliche Art und Weise zu Ebenen liegen.

    Details  
    { "Serlo": "DE:DBS:56192" }

  • Parallelität von Geraden

    Parallelität ist eine besondere Lagebeziehung zwischen zwei Geraden. Zwei Graden sind genau dann parallel, wenn sie sich nicht schneiden.

    Details  
    { "DBS": "DE:DBS:56396" }

  • Winkel

    Ein Winkel ist die Neigung, mit der zwei Geraden oder Ebenen aufeinandertreffen. Der Schnitt- bzw. Berührpunkt der beiden Geraden oder Ebenen heißt Scheitelpunkt S, die Geraden selbst Schenkel des Winkels.

    Details  
    { "DBS": "DE:DBS:56027" }

  • Abstand paralleler Geraden, Abstand paralleler Ebenen; Beispiel 2 | V.03.08

    Den Abstand von zwei parallelen Geraden berechnet man, in dem man den Stützvektor der einen Gerade nimmt und den Abstand zur anderen Gerade berechnet. Ein Abstand Gerade Ebene macht nur Sinn, wenn beide parallel sind. Man nimmt den Stützvektor der Gerade und berechnet den Abstand zur Ebene (z.B. über HNF). Den Abstand von zwei parallelen Ebenen berechnet man, in dem man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010451" }

  • Abstand paralleler Geraden, Abstand paralleler Ebenen; Beispiel 1 | V.03.08

    Den Abstand von zwei parallelen Geraden berechnet man, in dem man den Stützvektor der einen Gerade nimmt und den Abstand zur anderen Gerade berechnet. Ein Abstand Gerade Ebene macht nur Sinn, wenn beide parallel sind. Man nimmt den Stützvektor der Gerade und berechnet den Abstand zur Ebene (z.B. über HNF). Den Abstand von zwei parallelen Ebenen berechnet man, in dem man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010450" }

  • Abstand paralleler Geraden, Abstand paralleler Ebenen | V.03.08

    Den Abstand von zwei parallelen Geraden berechnet man, in dem man den Stützvektor der einen Gerade nimmt und den Abstand zur anderen Gerade berechnet. Ein Abstand Gerade Ebene macht nur Sinn, wenn beide parallel sind. Man nimmt den Stützvektor der Gerade und berechnet den Abstand zur Ebene (z.B. über HNF). Den Abstand von zwei parallelen Ebenen berechnet man, in dem man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010449" }

  • Abstand paralleler Geraden, Abstand paralleler Ebenen; Beispiel 3 | V.03.08

    Den Abstand von zwei parallelen Geraden berechnet man, in dem man den Stützvektor der einen Gerade nimmt und den Abstand zur anderen Gerade berechnet. Ein Abstand Gerade Ebene macht nur Sinn, wenn beide parallel sind. Man nimmt den Stützvektor der Gerade und berechnet den Abstand zur Ebene (z.B. über HNF). Den Abstand von zwei parallelen Ebenen berechnet man, in dem man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010452" }

  • Schnittmenge berechnen, Schnittpunkt, Schnittgerade | V.02

    Eine Schnittmenge zu berechnen, bedeutet Geraden und Ebenen auf Schnittpunkte und Schnittgeraden zu überprüfen. Dieses nennt man auch „gegenseitige Lage“ bestimmen. Wichtig sind gegenseitige Lage von zwei Geraden, gegenseitige Lage einer Gerade mit einer Ebene und die gegenseitige Lage zweier Ebenen. Die gesuchten Lösungen (bzw. den Lösungsvektor) berechnet man immer ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010405" }

  • Geradengleichung (Mathematik)

    Eine Gerade ist die unendliche Verlängerung der kürzesten Verbindung zwischen zwei Punkten. Anschaulich ist eine Gerade eine unendlich lange, gerade Linie. Zwischen zwei Punkten gibt es immer genau eine Gerade. Alle Geraden können durch eine lineare Gleichung dargestellt werden.

    Details  
    { "Serlo": "DE:DBS:56047" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 Eine Seite vor Zur letzten Seite