Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: GEOMETRISCHE und GRUNDLAGEN)

Es wurden 18 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Flächeninhalt von Trapezen

    Erarbeitung und Zusammenschau verschiedenartiger Wege zur Bestimmung von Trapezflächen ( Java Runtime Environment erforderlich).

    Details  
    { "Select.HE": "DE:Select.HE:1129474" }

  • Grundlegende geometrische Objekte

    In diesem Lernvideo von echteinfach.tv werden die grundlegenden geometrischen Begriffe Punkt, Strecke, Strahl und Gerade ausführlich und anschaulich erklärt. Das Lernvideo dient unter anderem der Einführung in die Trigonometrie. Es kann jedoch auch für den Beginn des Geometrieunterrichts genutzt werden.

    Details  
    { "Select.HE": "DE:Select.HE:1519535" }

  • Lernvideo Konstruktion der Winkelhalbierenden

    Das Lernvideo beschreibt und begründet die Konstruktion der Winkelhalbierenden und nennt einen wichtigen Merksatz.

    Details  
    { "Select.HE": "DE:Select.HE:1528557" }

  • Ein besonderes Viereck: Das Trapez

    Schülerinnen und Schüler bilden den neuen mathematischen Begriff, indem sie in einer dynamischen Konstruktion ein vorgegebenes Trapez in seiner Form variieren ( Java Runtime Environment erforderlich).

    Details  
    { "Select.HE": "DE:Select.HE:1129473" }

  • Wellenoptische Grundlagen der mikroskiopischen Bildentstehung

    Illustrierter Hypertext mit anschaulichen Bildern und ergänzendem Kapitel ´´Geometrische Optik´´.

    Details  
    { "DBS": "DE:DBS:17542" }

  • Zweitafelbilder

    Schülerinnen und Schüler erhalten Einblicke in die Entstehung von Zweitafelbildern durch die senkrechte Parallelprojektion auf zwei Projektionsebenen.

    Details  
    { "LO": "DE:SODIS:de.lehrer-online.885750" }

  • Dreiecksfläche berechnen, Beispiel 1 | A.18.08

    Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008975" }

  • Dreiecksfläche berechnen, Beispiel 2 | A.18.08

    Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008976" }

  • Dreiecksfläche berechnen, Beispiel 3 | A.18.08

    Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008977" }

  • Dreiecksfläche berechnen | A.18.08

    Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008974" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite