Geometrische Figur - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Ergebnis der Suche nach: (Freitext: GEOMETRISCHE und FIGUR)

Es wurden 100 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Dreiecke

    Berechnungen und Konstruktionen am Dreieck

    Details  
    { "SN": "DE:SBS:36" }

  • Geometriebegriffe

    Übersicht über feste Begriffe der Geometrie

    Details  
    { "SN": "DE:SBS:31" }

  • Multiple Choice Test Dreiecke und Vierecke


    Details  
    { "SN": "DE:SBS:142" }

  • Winkel an geschnittenen Parallelen


    Details  
    { "SN": "DE:SBS:34" }

  • Arbeitsblätter Geogebra

    3 Arbeitsblätter jeweils mit Erwartungsbild zu den Themen: - Dreieckskonstruktionen - Innenwinkelsumme im Viereck - Viereckskonstruktionen Hinweise zum Einsatz in einer kurzen Einleitung Die Dokumente liegen für Word, Star Office und als PDF vor. 

    Details  
    { "SN": "DE:SBS:135" }

  • Prisma (Mathematik)

    Ein Prisma ist eine dreidimensionale geometrische Figur. Um ein Prisma zu erhalten, findet die Parallelverschiebung eines n-Ecks (einer Fläche) statt.

    Details  
    { "DBS": "DE:DBS:55986" }

  • Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 1 | T.01.02

    In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010284" }

  • Winkelsumme im Dreieck, Winkelsumme im Viereck | T.01.02

    In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010283" }

  • Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 4 | T.01.02

    In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010287" }

  • Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 3 | T.01.02

    In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010286" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 Eine Seite vor Zur letzten Seite