Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: FUNKTION und (MATH))

Es wurden 77 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Tangente an Graph

    Eine Tangente an einen Graphen ist eine Gerade, die den Graphen einer Funktion f an einer bestimmten Stelle berührt, d. h. die Steigung der Tangente und der Funktion stimmen am Berührpunkt überein.

    Details  
    { "Serlo": "DE:DBS:56279" }

  • Monotonie (Mathematik)

    Eine reelle Funktion heißt monoton steigend (oder monoton wachsend), wenn für alle x,y aus der Definitionsmenge folgendes gilt...

    Details  
    { "Serlo": "DE:DBS:56129" }

  • Definitionsbereich einer Funktion (Mathematik)

    Der Definitionsbereich (auch: Definitionsmenge) gibt an, welche x-Werte in eine Funktion eingesetzt werden dürfen.

    Details  
    { "Serlo": "DE:DBS:55961" }

  • Musstewissen - Erklärvideos für das Fach Mathematik

    Hier finden sich zahlreiche Erklärvideos zum Fach Mathemathik: Von Brüchen bis hin zu Funktionen.

    Details  
    { "DBS": "DE:DBS:60951" }

  • Nullstelle (Mathematik)

    Die Nullstellen einer Funktion sind die x -Werte, an denen f(x)=0 ist. In einer Nullstelle schneidet oder berührt der Graph der Funktion also die x-Achse.

    Details  
    { "Serlo": "DE:DBS:56091" }

  • Ableitung (Mathematik)

    Die Ableitung einer Funktion f an einer Stelle x gibt die Steigung des Graphen der Funktion an dieser Stelle an.

    Details  
    { "Serlo": "DE:DBS:56071" }

  • Extremum (Mathematik)

    Ein Extremum ist der Oberbegriff für ein lokales oder globales Minimum oder Maximum.

    Details  
    { "DBS": "DE:DBS:55963" }

  • Stetigkeit (Mathematik)

    Eine Funktion f heißt genau dann stetig an einer Stelle x_0, wenn der Funktionswert an dieser Stelle mit sowohl links- als auch rechtsseitigem Grenzwert identisch ist.

    Details  
    { "Serlo": "DE:DBS:55972" }

  • Hebbare Definitionslücke (Mathematik)

    (Stetig) hebbare oder behebbare Definitionslücken können bei gebrochen-rationalen Funktionen vorkommen.

    Details  
    { "Serlo": "DE:DBS:55938" }

  • Grenzwertbetrachtung (Mathematik)

    Die Grenzwertbetrachtung dient dazu, das Verhalten einer Funktion und ihres Graphen entweder im Unendlichen oder an einer bestimmten Stelle (meist Definitionslücke) zu ermitteln.

    Details  
    { "Serlo": "DE:DBS:55973" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite