F��rderungsma��nahme - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (3)
Ergebnis der Suche nach: (Freitext: F��RDERUNGSMA��NAHME)
Es wurden 673 Einträge gefunden
- Treffer:
- 21 bis 30
-
Symmetrie einer Funktion mit Formel berechnen, Beispiel 2 | A.17.03
Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so gilt die Formel: f(a-x)+f(a+x)=2b. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so gilt die Formel: f(a-x)=f(a+x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008925" }
-
Symmetrie einer Funktion mit Formel berechnen, Beispiel 4 | A.17.03
Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so gilt die Formel: f(a-x)+f(a+x)=2b. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so gilt die Formel: f(a-x)=f(a+x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008927" }
-
Kubismus
Wir versuchen eine Zeitleiste zu erstellen.
Details { "HE": [] }
-
Polynome über Bedingungen aufstellen, Beispiel 2 | A.46.05
Um Polynome aufzustellen gibt es eigentlich nur drei Typen von Informationen: 1). Punkte. In diesem Fall setzt man x- und y-Wert in f(x) ein [=Inzidenzbedingung]. 2).Steigungen. In diesem Fall setzt man x-Wert und Steigung in f'(x) ein. 3). Hoch-, Tief- oder Wendepunkt. In diesem Fall setzt man f'(x)=0 bzw. f''(x)=0 und setzt für x den entsprechenden ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009638" }
-
Polynome über Bedingungen aufstellen, Beispiel 3 | A.46.05
Um Polynome aufzustellen gibt es eigentlich nur drei Typen von Informationen: 1). Punkte. In diesem Fall setzt man x- und y-Wert in f(x) ein [=Inzidenzbedingung]. 2).Steigungen. In diesem Fall setzt man x-Wert und Steigung in f'(x) ein. 3). Hoch-, Tief- oder Wendepunkt. In diesem Fall setzt man f'(x)=0 bzw. f''(x)=0 und setzt für x den entsprechenden ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009639" }
-
Polynome über Bedingungen aufstellen, Beispiel 1 | A.46.05
Um Polynome aufzustellen gibt es eigentlich nur drei Typen von Informationen: 1). Punkte. In diesem Fall setzt man x- und y-Wert in f(x) ein [=Inzidenzbedingung]. 2).Steigungen. In diesem Fall setzt man x-Wert und Steigung in f'(x) ein. 3). Hoch-, Tief- oder Wendepunkt. In diesem Fall setzt man f'(x)=0 bzw. f''(x)=0 und setzt für x den entsprechenden ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009637" }
-
Polynome über Bedingungen aufstellen, Beispiel 5 | A.46.05
Um Polynome aufzustellen gibt es eigentlich nur drei Typen von Informationen: 1). Punkte. In diesem Fall setzt man x- und y-Wert in f(x) ein [=Inzidenzbedingung]. 2).Steigungen. In diesem Fall setzt man x-Wert und Steigung in f'(x) ein. 3). Hoch-, Tief- oder Wendepunkt. In diesem Fall setzt man f'(x)=0 bzw. f''(x)=0 und setzt für x den entsprechenden ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009641" }
-
Polynome über Bedingungen aufstellen | A.46.05
Um Polynome aufzustellen gibt es eigentlich nur drei Typen von Informationen: 1). Punkte. In diesem Fall setzt man x- und y-Wert in f(x) ein [=Inzidenzbedingung]. 2).Steigungen. In diesem Fall setzt man x-Wert und Steigung in f'(x) ein. 3). Hoch-, Tief- oder Wendepunkt. In diesem Fall setzt man f'(x)=0 bzw. f''(x)=0 und setzt für x den entsprechenden ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009636" }
-
Polynome über Bedingungen aufstellen, Beispiel 4 | A.46.05
Um Polynome aufzustellen gibt es eigentlich nur drei Typen von Informationen: 1). Punkte. In diesem Fall setzt man x- und y-Wert in f(x) ein [=Inzidenzbedingung]. 2).Steigungen. In diesem Fall setzt man x-Wert und Steigung in f'(x) ein. 3). Hoch-, Tief- oder Wendepunkt. In diesem Fall setzt man f'(x)=0 bzw. f''(x)=0 und setzt für x den entsprechenden ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009640" }
-
Wiederholung Zeitform Present Perfect
Szenario für eine Wiederholungssequenz Zeitformen im Englischunterricht Internetzugang für die Nutzung von integrierten Online-Angeboten ist notwendig
Details { "SN": "DE:SBS:111" }