Exponentialgleichung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Suche nach Exponentialgleichung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (17)

Exponentialfunktion: Nullstellen berechnen, Beispiel 6 | A.41.01
Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.
Exponentialfunktion: Nullstellen berechnen, Beispiel 4 | A.41.01
Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.
Exponentialfunktion: Nullstellen berechnen | A.41.01
Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.
Exponentialfunktion: Nullstellen berechnen, Beispiel 3 | A.41.01
Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.
Exponentialfunktion: Nullstellen berechnen, Beispiel 2 | A.41.01
Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.
Exponentialfunktion: Nullstellen berechnen, Beispiel 1 | A.41.01
Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.
Exponentialfunktion: Nullstellen berechnen, Beispiel 5 | A.41.01
Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.
Übungen: Exponentialgleichungen
Auf dieser Seite von serlo.org werden Exponentialgleichungen angegeben, deren Lösungen man bei Bedarf ein- und ausblenden kann.
Flip the Classroom: komplexere Exponentialgleichungen
In diesem Lernvideo von Flip the Classroom werden komplexere Exponentialgleichungen vorgestellt und dazu konkrete Lösungsstrategien entwickelt.
Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 5 | A.41.02
Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,