Erstlekt��re - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen - ELIXIER

Ergebnis der Suche nach: (Freitext: ERSTLEKT��RE)

Es wurden 51 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Cicero, De re publica 1, 24, 38: Die Staatsdefinition

    Ciceros berühmte Definition des Staatsbegriffs

    Details  
    { "LBS-BW": [] }

  • Cicero, De re publica 1, 21, 34: Philosophie und Erfahrung

    Staatsphilosophie sollte auf der Basis von Erfahrung betrieben werden

    Details  
    { "LBS-BW": [] }

  • Cicero, De re publica 2, 17, 23: Über das Kriegsrecht

    Cicero beschreibt hier, dass das Kriegsrecht in der Königszeit festgelegt wurde.

    Details  
    { "LBS-BW": [] }

  • Wirtschaftsmatrizen R-Z-E: Zusammenhang zwischen den Matrizen | M.05.01

    Es gibt nur eine einzige Formel die den Zusammenhang zwischen den Matrizen der wirtschaftlichen Anwendungen beschreibt: (RZ)*(ZE)=(RE). Benötigt man die (RZ)-Matrix, muss man die Formel umstellen zu: (RZ)=(RE)*(ZE)^-1. Benötigt man die (ZE)-Matrix, wird die Formel umgestellt zu: (ZE)=(RZ)^-1*(RE).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010204" }

  • Wirtschaftsmatrizen R-Z-E: Zusammenhang zwischen den Matrizen, Beispiel 2 | M.05.01

    Es gibt nur eine einzige Formel die den Zusammenhang zwischen den Matrizen der wirtschaftlichen Anwendungen beschreibt: (RZ)*(ZE)=(RE). Benötigt man die (RZ)-Matrix, muss man die Formel umstellen zu: (RZ)=(RE)*(ZE)^-1. Benötigt man die (ZE)-Matrix, wird die Formel umgestellt zu: (ZE)=(RZ)^-1*(RE).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010206" }

  • Wirtschaftsmatrizen R-Z-E: Zusammenhang zwischen den Matrizen, Beispiel 1 | M.05.01

    Es gibt nur eine einzige Formel die den Zusammenhang zwischen den Matrizen der wirtschaftlichen Anwendungen beschreibt: (RZ)*(ZE)=(RE). Benötigt man die (RZ)-Matrix, muss man die Formel umstellen zu: (RZ)=(RE)*(ZE)^-1. Benötigt man die (ZE)-Matrix, wird die Formel umgestellt zu: (ZE)=(RZ)^-1*(RE).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010205" }

  • Wirtschaftsmatrizen R-Z-E: Zusammenhang zwischen den Matrizen, Beispiel 3 | M.05.01

    Es gibt nur eine einzige Formel die den Zusammenhang zwischen den Matrizen der wirtschaftlichen Anwendungen beschreibt: (RZ)*(ZE)=(RE). Benötigt man die (RZ)-Matrix, muss man die Formel umstellen zu: (RZ)=(RE)*(ZE)^-1. Benötigt man die (ZE)-Matrix, wird die Formel umgestellt zu: (ZE)=(RZ)^-1*(RE).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010207" }

  • Wirtschaftsmatrizen R-Z-E: kurze Erklärung | M.05

    Bei sogenannten wirtschaftlichen Anwendungen geht es immer um eine Firma, die Rohstoffe kauft, diese zu Zwischenprodukten umwandelt und diese wiederum zu Endprodukten. Die Übergänge werden durch Wirtschaftsmatrizen beschrieben. Die (RZ)-Matrix beschreibt den Übergang von Rohstoffen zu Zwischenprodukten, die (ZE)-Matrix den Übergang von Zwischenprodukten zu Endprodukten und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010203" }

  • Herstellkosten berechnen | M.05.02

    Die Fertigungskosten bei wirtschaftlichen Anwendungen berechnen sich über die Formel: kvar=kr*(RE)+kz*(ZE)+ke. Hierbei sind kvar die variablen Herstellkosten für die Endprodukte, kr, kz und ke der sind Zeilenvektoren der Rohstoffkosten, der Zwischenprodukte und der Endprodukte. (RE) und (ZE) sind natürlich die Rohstoff-Endprodukt-Matrix bzw. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010208" }

  • Wirtschaftsmatrizen R-Z-E: leichte Übung Teil b | M.05.03

    Beispielaufgaben zu Wirtschaftsmatrizen beginnen immer, in dem man eine der Matrizen (RZ), (ZE) oder (RE) aus den anderen beiden berechnen muss oder in dem entweder Rohstoffe oder Zwischenprodukte oder Endprodukte gegeben sind, und man eines der anderen berechnen muss. Geht meist recht einfach, man muss sich nur überlegen welche der Formeln man braucht. Da es nur wenig ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010214" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 Eine Seite vor Zur letzten Seite