Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: BINOMIALKOEFFIZIENT)

Es wurden 32 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Binomialkoeffizient: was das ist und wie man damit rechnet, Beispiel 1 | W.12.02

    Eine der wirklich wichtigen Vertauschungsmöglichkeiten ist der Binomialkoeffizient (bzw. auch Binominalkoeffizient). Es wird angewendet, falls es nur zwei Auswahlmöglichkeiten gibt (z.B. nur rote Kugeln oder nichtrote Kugeln) und falls die Frage so ähnlich formuliert werden kann, wie: „Wieviel Möglichkeiten gibt es, diese beiden Kugelsorten hintereinander ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010708" }

  • Binomialkoeffizient: was das ist und wie man damit rechnet, Beispiel 3 | W.12.02

    Eine der wirklich wichtigen Vertauschungsmöglichkeiten ist der Binomialkoeffizient (bzw. auch Binominalkoeffizient). Es wird angewendet, falls es nur zwei Auswahlmöglichkeiten gibt (z.B. nur rote Kugeln oder nichtrote Kugeln) und falls die Frage so ähnlich formuliert werden kann, wie: „Wieviel Möglichkeiten gibt es, diese beiden Kugelsorten hintereinander ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010710" }

  • Binomialkoeffizient: was das ist und wie man damit rechnet | W.12.02

    Eine der wirklich wichtigen Vertauschungsmöglichkeiten ist der Binomialkoeffizient (bzw. auch Binominalkoeffizient). Es wird angewendet, falls es nur zwei Auswahlmöglichkeiten gibt (z.B. nur rote Kugeln oder nichtrote Kugeln) und falls die Frage so ähnlich formuliert werden kann, wie: „Wieviel Möglichkeiten gibt es, diese beiden Kugelsorten hintereinander ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010707" }

  • Binomialkoeffizient: was das ist und wie man damit rechnet, Beispiel 2 | W.12.02

    Eine der wirklich wichtigen Vertauschungsmöglichkeiten ist der Binomialkoeffizient (bzw. auch Binominalkoeffizient). Es wird angewendet, falls es nur zwei Auswahlmöglichkeiten gibt (z.B. nur rote Kugeln oder nichtrote Kugeln) und falls die Frage so ähnlich formuliert werden kann, wie: „Wieviel Möglichkeiten gibt es, diese beiden Kugelsorten hintereinander ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010709" }

  • Binomialverteilung Bernoulli-Formel mit Binomialkoeffizient, Beispiel 2 | W.16.01

    Die Formel für die Binomialverteilung heißt auch „Bernoulli-Formel“ und setzt sich aus drei Teilen zusammen. Zum einen der Binomialkoeffizient (der die Vertauschungsmöglichkeiten angibt), die W.S. der ersten Möglichkeit hoch der Anzahl davon, sowie die W.S. der zweiten Möglichkeit hoch der Anzahl davon. Als Formel: Sei n die Gesamtanzahl aller Züge, k sei die Anzahl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010785" }

  • Binomialverteilung Bernoulli-Formel mit Binomialkoeffizient, Beispiel 3 | W.16.01

    Die Formel für die Binomialverteilung heißt auch „Bernoulli-Formel“ und setzt sich aus drei Teilen zusammen. Zum einen der Binomialkoeffizient (der die Vertauschungsmöglichkeiten angibt), die W.S. der ersten Möglichkeit hoch der Anzahl davon, sowie die W.S. der zweiten Möglichkeit hoch der Anzahl davon. Als Formel: Sei n die Gesamtanzahl aller Züge, k sei die Anzahl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010786" }

  • Binomialverteilung Bernoulli-Formel mit Binomialkoeffizient | W.16.01

    Die Formel für die Binomialverteilung heißt auch „Bernoulli-Formel“ und setzt sich aus drei Teilen zusammen. Zum einen der Binomialkoeffizient (der die Vertauschungsmöglichkeiten angibt), die W.S. der ersten Möglichkeit hoch der Anzahl davon, sowie die W.S. der zweiten Möglichkeit hoch der Anzahl davon. Als Formel: Sei n die Gesamtanzahl aller Züge, k sei die Anzahl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010783" }

  • Binomialverteilung Bernoulli-Formel mit Binomialkoeffizient, Beispiel 4 | W.16.01

    Die Formel für die Binomialverteilung heißt auch „Bernoulli-Formel“ und setzt sich aus drei Teilen zusammen. Zum einen der Binomialkoeffizient (der die Vertauschungsmöglichkeiten angibt), die W.S. der ersten Möglichkeit hoch der Anzahl davon, sowie die W.S. der zweiten Möglichkeit hoch der Anzahl davon. Als Formel: Sei n die Gesamtanzahl aller Züge, k sei die Anzahl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010787" }

  • Binomialverteilung Bernoulli-Formel mit Binomialkoeffizient, Beispiel 1 | W.16.01

    Die Formel für die Binomialverteilung heißt auch „Bernoulli-Formel“ und setzt sich aus drei Teilen zusammen. Zum einen der Binomialkoeffizient (der die Vertauschungsmöglichkeiten angibt), die W.S. der ersten Möglichkeit hoch der Anzahl davon, sowie die W.S. der zweiten Möglichkeit hoch der Anzahl davon. Als Formel: Sei n die Gesamtanzahl aller Züge, k sei die Anzahl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010784" }

  • Binomialkoeffizient

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Der Binomialkoeffizient findet vor allem Anwendung in der Stochastik aber auch in anderen Gebieten der Mathematik. Hier ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004554" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 Eine Seite vor Zur letzten Seite