Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: BERÜHRKREIS)

Es wurden 12 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Polarebene | V.06.17

    Legt man von einem Punkt P, der außerhalb einer Kugel liegt, Tangenten an die Kugel, so bilden alle Berührpunkte einen Kreis, einen Berührkreis. Dieser Kreis liegt in einer Ebene, welche Polarebene heißt. Um eine Gleichung davon zu bestimmen, verwendet man am besten die Formel für die Tangentialgleichung. Da setzt man Mittelpunkt und den Punkt P ein und erhält eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010587" }

  • Polarebene, Beispiel 3 | V.06.17

    Legt man von einem Punkt P, der außerhalb einer Kugel liegt, Tangenten an die Kugel, so bilden alle Berührpunkte einen Kreis, einen Berührkreis. Dieser Kreis liegt in einer Ebene, welche Polarebene heißt. Um eine Gleichung davon zu bestimmen, verwendet man am besten die Formel für die Tangentialgleichung. Da setzt man Mittelpunkt und den Punkt P ein und erhält eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010590" }

  • Polarebene, Beispiel 1 | V.06.17

    Legt man von einem Punkt P, der außerhalb einer Kugel liegt, Tangenten an die Kugel, so bilden alle Berührpunkte einen Kreis, einen Berührkreis. Dieser Kreis liegt in einer Ebene, welche Polarebene heißt. Um eine Gleichung davon zu bestimmen, verwendet man am besten die Formel für die Tangentialgleichung. Da setzt man Mittelpunkt und den Punkt P ein und erhält eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010588" }

  • Polarebene, Beispiel 2 | V.06.17

    Legt man von einem Punkt P, der außerhalb einer Kugel liegt, Tangenten an die Kugel, so bilden alle Berührpunkte einen Kreis, einen Berührkreis. Dieser Kreis liegt in einer Ebene, welche Polarebene heißt. Um eine Gleichung davon zu bestimmen, verwendet man am besten die Formel für die Tangentialgleichung. Da setzt man Mittelpunkt und den Punkt P ein und erhält eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010589" }

  • Tangentialkegel wenn Tangenten an Kugel, Beispiel 1 | V.06.16

    Legt man von einem Punkt außerhalb einer Kugel Tangenten an diese Kugel, so erhält man unendlich viele Tangenten, die zusammen einen (unendlich großen) Tangentialkegel bilden. Der Kegel wird endlich, wenn man den Punkt als Spitze des Kegels betrachten und den Berührkreis der Tangenten an die Kugel als Grundkreis des Kegels. Normalerweise ist nun nach Volumen, Oberfläche ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010584" }

  • Schnittpunkt Kreis-Kreis berechnen, Beispiel 2 | V.06.03

    Schnitt Kreis Kreis: Schneidet man zwei Kreise, erhält man keinen, einen oder zwei Schnittpunkte. [Gibt es genau einen Schnittpunkt ist praktisch jeder Kreis ein Berührkreis]. Rechnerisch geht man beim Schnitt von zwei Kreisen so vor, dass man in beiden Kreisgleichungen alle Klammern (mit binomischen Formeln?!) auflöst und danach beide Gleichungen voneinander abzieht. Man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010533" }

  • Schnittpunkt Kreis-Kreis berechnen | V.06.03

    Schnitt Kreis Kreis: Schneidet man zwei Kreise, erhält man keinen, einen oder zwei Schnittpunkte. [Gibt es genau einen Schnittpunkt ist praktisch jeder Kreis ein Berührkreis]. Rechnerisch geht man beim Schnitt von zwei Kreisen so vor, dass man in beiden Kreisgleichungen alle Klammern (mit binomischen Formeln?!) auflöst und danach beide Gleichungen voneinander abzieht. Man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010531" }

  • Schnittpunkt Kreis-Kreis berechnen, Beispiel 3 | V.06.03

    Schnitt Kreis Kreis: Schneidet man zwei Kreise, erhält man keinen, einen oder zwei Schnittpunkte. [Gibt es genau einen Schnittpunkt ist praktisch jeder Kreis ein Berührkreis]. Rechnerisch geht man beim Schnitt von zwei Kreisen so vor, dass man in beiden Kreisgleichungen alle Klammern (mit binomischen Formeln?!) auflöst und danach beide Gleichungen voneinander abzieht. Man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010534" }

  • Schnittpunkt Kreis-Kreis berechnen, Beispiel 1 | V.06.03

    Schnitt Kreis Kreis: Schneidet man zwei Kreise, erhält man keinen, einen oder zwei Schnittpunkte. [Gibt es genau einen Schnittpunkt ist praktisch jeder Kreis ein Berührkreis]. Rechnerisch geht man beim Schnitt von zwei Kreisen so vor, dass man in beiden Kreisgleichungen alle Klammern (mit binomischen Formeln?!) auflöst und danach beide Gleichungen voneinander abzieht. Man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010532" }

  • Tangentialkegel wenn Tangenten an Kugel, Beispiel 2 | V.06.16

    Legt man von einem Punkt außerhalb einer Kugel Tangenten an diese Kugel, so erhält man unendlich viele Tangenten, die zusammen einen (unendlich großen) Tangentialkegel bilden. Der Kegel wird endlich, wenn man den Punkt als Spitze des Kegels betrachten und den Berührkreis der Tangenten an die Kugel als Grundkreis des Kegels. Normalerweise ist nun nach Volumen, Oberfläche ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010585" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite