Befehl - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Ergebnis der Suche nach: (Freitext: BEFEHL)

Es wurden 30 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Learning Snack: Print-Befehl in Python

    Der Print-Befehl in Python wird im Chat-Format eingeführt und das Verständnis anhand von kurzen Aufgaben überprüft. Das Konzept Variablen wird vorausgesetzt.

    Details  
    { "HE": [] }

  • Binomialverteilung mit GTR oder CAS berechnen, Beispiel 3 | W.16.03

    Die Binomialverteilung berechnet man mit einem GTR oder einem CAS mit einem einfachen Befehl: „binompdf(n,p,k)“. Hierbei ist „n“ die Gesamtanzahl aller Züge, k ist die Anzahl der gewünschten Treffer, p ist die W.S. eines einzelnen Treffers. Will man die Summe aller Treffer von „0“ bis „k“ haben, kann man den Befehl „binomcdf(n,p,k)“ verwendet.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010796" }

  • Binomialverteilung LaPlace Bedingung | W.16.04

    Die Binomialverteilung berechnet man mit einem GTR oder einem CAS mit einem einfachen Befehl: „binompdf(n,p,k)“. Hierbei ist „n“ die Gesamtanzahl aller Züge, k ist die Anzahl der gewünschten Treffer, p ist die W.S. eines einzelnen Treffers. Will man die Summe aller Treffer von „0“ bis „k“ haben, kann man den Befehl „binomcdf(n,p,k)“ verwendet.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010798" }

  • Binomialverteilung mit GTR oder CAS berechnen, Beispiel 1 | W.16.03

    Die Binomialverteilung berechnet man mit einem GTR oder einem CAS mit einem einfachen Befehl: „binompdf(n,p,k)“. Hierbei ist „n“ die Gesamtanzahl aller Züge, k ist die Anzahl der gewünschten Treffer, p ist die W.S. eines einzelnen Treffers. Will man die Summe aller Treffer von „0“ bis „k“ haben, kann man den Befehl „binomcdf(n,p,k)“ verwendet.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010794" }

  • Binomialverteilung mit GTR oder CAS berechnen, Beispiel 2 | W.16.03

    Die Binomialverteilung berechnet man mit einem GTR oder einem CAS mit einem einfachen Befehl: „binompdf(n,p,k)“. Hierbei ist „n“ die Gesamtanzahl aller Züge, k ist die Anzahl der gewünschten Treffer, p ist die W.S. eines einzelnen Treffers. Will man die Summe aller Treffer von „0“ bis „k“ haben, kann man den Befehl „binomcdf(n,p,k)“ verwendet.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010795" }

  • Binomialverteilung mit GTR oder CAS berechnen | W.16.03

    Die Binomialverteilung berechnet man mit einem GTR oder einem CAS mit einem einfachen Befehl: „binompdf(n,p,k)“. Hierbei ist „n“ die Gesamtanzahl aller Züge, k ist die Anzahl der gewünschten Treffer, p ist die W.S. eines einzelnen Treffers. Will man die Summe aller Treffer von „0“ bis „k“ haben, kann man den Befehl „binomcdf(n,p,k)“ verwendet.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010793" }

  • Binomialverteilung mit GTR oder CAS berechnen, Beispiel 4 | W.16.03

    Die Binomialverteilung berechnet man mit einem GTR oder einem CAS mit einem einfachen Befehl: „binompdf(n,p,k)“. Hierbei ist „n“ die Gesamtanzahl aller Züge, k ist die Anzahl der gewünschten Treffer, p ist die W.S. eines einzelnen Treffers. Will man die Summe aller Treffer von „0“ bis „k“ haben, kann man den Befehl „binomcdf(n,p,k)“ verwendet.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010797" }

  • Star Wars - Code.org

    Die Geschichte des Films Star Wars - das Erwachen der Macht wird als Anlass genommen, in 10 kleinen Lektionen spielerisch Programmierkenntnisse zu vermitteln. Per drag&drop können einzelne Bausteine zu einem Programm verbunden werden. In Erklärvideos werden die Funktionen beschrieben.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00011569" }

  • Sieger und Besiegte im Nachkriegsdeutschland 1945-1958 - Die Zulassung von Parteien in der SBZ 1945

    Auszüge aus dem Befehl Nr. 2 der Sowjetischen Militäradministration in Deutschland (SMAD) vom 10. Juni 1945. Fragen zum Text und Aufforderung zur Diskussion zweier unterschiedelicher Forschungsmeinungen.

    Details  
    { "MELT": "DE:SODIS:MELT-04602200.8" }

  • Lernkarten zu Scratch 3.0 Fangspiel

    Mit Hilfe der Lernkarten entsteht Schritt für Schritt ein Grundverständnis von der Programmiersprache Scratch. Die Karten bauen aufeinander auf und führen zu einem ersten fertig programmierten Spiel.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00015057" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite