Abstand - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Ergebnis der Suche nach: (Freitext: ABSTAND)

Es wurden 227 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Abstand Punkt-Kreis berechnen | V.06.04

    Abstand Punkt Kreis: Man berechnet einfach eigentlich nur den Abstand vom Punkt zum Kreismittelpunkt. Nun vergleicht man das Ergebnis mit dem Kreisradius. Ist der Abstand kleiner als der Radius, muss der Punkt innerhalb eines Kreises liegen. Ist der Abstand größer als der Radius, liegt ein Punkt außerhalb vom Kreis. Den Abstand zum Kreis ist die Differenz vom Radius zum ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010535" }

  • Abstand paralleler Geraden, Abstand paralleler Ebenen; Beispiel 2 | V.03.08

    Den Abstand von zwei parallelen Geraden berechnet man, in dem man den Stützvektor der einen Gerade nimmt und den Abstand zur anderen Gerade berechnet. Ein Abstand Gerade Ebene macht nur Sinn, wenn beide parallel sind. Man nimmt den Stützvektor der Gerade und berechnet den Abstand zur Ebene (z.B. über HNF). Den Abstand von zwei parallelen Ebenen berechnet man, in dem man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010451" }

  • Abstand paralleler Geraden, Abstand paralleler Ebenen; Beispiel 1 | V.03.08

    Den Abstand von zwei parallelen Geraden berechnet man, in dem man den Stützvektor der einen Gerade nimmt und den Abstand zur anderen Gerade berechnet. Ein Abstand Gerade Ebene macht nur Sinn, wenn beide parallel sind. Man nimmt den Stützvektor der Gerade und berechnet den Abstand zur Ebene (z.B. über HNF). Den Abstand von zwei parallelen Ebenen berechnet man, in dem man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010450" }

  • Abstand paralleler Geraden, Abstand paralleler Ebenen; Beispiel 3 | V.03.08

    Den Abstand von zwei parallelen Geraden berechnet man, in dem man den Stützvektor der einen Gerade nimmt und den Abstand zur anderen Gerade berechnet. Ein Abstand Gerade Ebene macht nur Sinn, wenn beide parallel sind. Man nimmt den Stützvektor der Gerade und berechnet den Abstand zur Ebene (z.B. über HNF). Den Abstand von zwei parallelen Ebenen berechnet man, in dem man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010452" }

  • Abstand paralleler Geraden, Abstand paralleler Ebenen | V.03.08

    Den Abstand von zwei parallelen Geraden berechnet man, in dem man den Stützvektor der einen Gerade nimmt und den Abstand zur anderen Gerade berechnet. Ein Abstand Gerade Ebene macht nur Sinn, wenn beide parallel sind. Man nimmt den Stützvektor der Gerade und berechnet den Abstand zur Ebene (z.B. über HNF). Den Abstand von zwei parallelen Ebenen berechnet man, in dem man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010449" }

  • Abstand berechnen | V.03

    Es gibt drei wichtige Abstände: 1.Abstand Punkt-Punkt, 2.Punkt-Gerade, 3.Abstand Punkt-Ebene. Die Entfernung von allem anderen führt man auf diese ersten drei zurück. (Ausnahme bilden zwei windschiefe Geraden. Man kann deren Abstand berechnen, in dem man entweder eine Formel anwendet oder die Lotfußpunkte bestimmt.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010420" }

  • Abstand Ebene-Kugel berechnen, Beispiel 3 | V.06.13

    Abstand Ebene-Kugel berechnet man, indem man den Abstand der Ebene zum Kugelmittelpunkt berechnet (am besten über HNF). Ist dieser Abstand kleiner als der Kugelradius, schneiden sich Kugel und Ebene, es entsteht ein Schnittkreis. Ist der Abstand gleich dem Kugelradius, berühren sich Kugel und Ebene (man hat es mit einer Tangentialebene zu tun). Ist der Abstand größer als ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010574" }

  • Abstand Ebene-Kugel berechnen | V.06.13

    Abstand Ebene-Kugel berechnet man, indem man den Abstand der Ebene zum Kugelmittelpunkt berechnet (am besten über HNF). Ist dieser Abstand kleiner als der Kugelradius, schneiden sich Kugel und Ebene, es entsteht ein Schnittkreis. Ist der Abstand gleich dem Kugelradius, berühren sich Kugel und Ebene (man hat es mit einer Tangentialebene zu tun). Ist der Abstand größer als ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010571" }

  • Abstand Gerade-Kugel berechnen, Beispiel 2 | V.06.12

    Abstand Gerade-Kugel berechnet man, indem man das Ganze sofort auf Abstand Punkt-Gerade zurückführt. Man berechnet also den Abstand vom Mittelpunkt zur Gerade (mit welcher Methode auch immer) und zieht den Kugelradius ab. Ist der Abstand kleiner als der Kugelradius, so schneiden sich Kugel und Gerade. Sind beide genau gleich, berühren sich Gerade und Kugel. Die Gerade ist ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010569" }

  • Abstand Ebene-Kugel berechnen, Beispiel 1 | V.06.13

    Abstand Ebene-Kugel berechnet man, indem man den Abstand der Ebene zum Kugelmittelpunkt berechnet (am besten über HNF). Ist dieser Abstand kleiner als der Kugelradius, schneiden sich Kugel und Ebene, es entsteht ein Schnittkreis. Ist der Abstand gleich dem Kugelradius, berühren sich Kugel und Ebene (man hat es mit einer Tangentialebene zu tun). Ist der Abstand größer als ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010572" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite