Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: ABLEITUNG und (MATH))

Es wurden 14 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Ableitung (Mathematik)

    Die Ableitung einer Funktion f an einer Stelle x gibt die Steigung des Graphen der Funktion an dieser Stelle an.

    Details  
    { "Serlo": "DE:DBS:56071" }

  • Ableitung der Umkehrfunktion (Mathematik)

    Die Ableitung einer Umkehrfunktion lässt sich mithilfe einer bestimmten Formel bestimmen.

    Details  
    { "Serlo": "DE:DBS:56076" }

  • Tangente an Graph

    Eine Tangente an einen Graphen ist eine Gerade, die den Graphen einer Funktion f an einer bestimmten Stelle berührt, d. h. die Steigung der Tangente und der Funktion stimmen am Berührpunkt überein.

    Details  
    { "Serlo": "DE:DBS:56279" }

  • Quotientenregel (Mathematik)

    Die Quotientenregel bietet eine Möglichkeit, die Ableitung eines Quotienten zweier differenzierbarer Funktionen u und v zu berechnen.

    Details  
    { "Serlo": "DE:DBS:56074" }

  • Extremum (Mathematik)

    Ein Extremum ist der Oberbegriff für ein lokales oder globales Minimum oder Maximum.

    Details  
    { "DBS": "DE:DBS:55963" }

  • Summenregel (Mathematik)

    Die Summenregel besagt, dass die Ableitung der Summe zweier differenzierbarer Funktionen gleich der Summe ihrer Ableitungen ist.

    Details  
    { "Serlo": "DE:DBS:56073" }

  • Produktregel (Mathematik)

    Die Produktregel ist eine Regel für das Ableiten von Produkten zweier differenzierbarer Funktionen u und v.

    Details  
    { "Serlo": "DE:DBS:56075" }

  • Nullstelle (Mathematik)

    Die Nullstellen einer Funktion sind die x -Werte, an denen f(x)=0 ist. In einer Nullstelle schneidet oder berührt der Graph der Funktion also die x-Achse.

    Details  
    { "Serlo": "DE:DBS:56091" }

  • Definitionsbereich einer Funktion (Mathematik)

    Der Definitionsbereich (auch: Definitionsmenge) gibt an, welche x-Werte in eine Funktion eingesetzt werden dürfen.

    Details  
    { "Serlo": "DE:DBS:55961" }

  • Extrema berechnen

    Die normalen Extrema einer stetig differenzierbaren Funktion findet man an Nullstellen ihrer Ableitung (jedoch nicht unbedingt an allen!). Um die x-Werte der Hoch- und Tiefpunkte zu finden reicht es, die Nullstellen der 1. Ableitung zu finden und zu überprüfen, ob an diesen Stellen wirklich Extrema vorliegen.

    Details  
    { "DBS": "DE:DBS:56096" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite