Ergebnis der Suche

Ergebnis der Suche nach: ( ( (Systematikpfad: MATHEMATIK) und (Systematikpfad: "ZUORDNUNGEN, FUNKTIONEN") ) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Schlagwörter: "SEKUNDARSTUFE II")

Es wurden 50 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Amplitude (Mathematik)

    Die Amplitude ist die maximale Auslenkung einer periodisch wellenförmigen Funktion von ihrer Ruhelage aus. Periodisch bedeutet in diesem Falle, dass die Funktion in gleichen Abständen immer wieder dieselben Werte annimmt, bzw. anschaulich gesehen immer wieder dieselbe Form hat.

    Details  
    { "Serlo": "DE:DBS:55958" }

  • Quadratische Gleichung (Mathematik)

    Eine quadratische Gleichung ist eine Gleichung mit einer bestimmten Form. Sie tritt meist bei der Nullstellenberechnug einer quadratischen Funktion auf.

    Details  
    { "Serlo": "DE:DBS:56084" }

  • Grenzwert bestimmen

    Der Grenzwert einer Summe ist die Summe der Grenzwerte und der Grenzwert eines Produktes ist das Produkt der Grenzwerte.

    Details  
    { "Serlo": "DE:DBS:56100" }

  • Sprungstelle

    Eine Sprungstelle ist eine Stelle x_0, an der der linksseitige und der rechtsseitige Grenzwert unterschiedlich sind.

    Details  
    { "Serlo": "DE:DBS:56038" }

  • Exponentielles Wachstum (Mathematik)

    Exponentielles Wachstum bescheibt Wachstums- oder Zerfallsprozesse, die von prozentualen Änderungen abhängig sind. Mathematisch können solche Vorgänge mit einer Formel beschrieben werden.

    Details  
    { "Serlo": "DE:DBS:56191" }

  • Hebbare Definitionslücke (Mathematik)

    (Stetig) hebbare oder behebbare Definitionslücken können bei gebrochen-rationalen Funktionen vorkommen.

    Details  
    { "Serlo": "DE:DBS:55938" }

  • Monotonieverhalten berechnen (Mathematik)

    Die Betrachtung des Monotonieverhaltens einer Funktion ist fester Bestandteil der Kurvendiskussion.

    Details  
    { "Serlo": "DE:DBS:56024" }

  • Krümmung eines Funktionsgraphen

    Meist interessiert man sich für die Krümmung bestimmter Abschnitte des Graphen. Dazu betrachtet man die zweite Ableitung.

    Details  
    { "Serlo": "DE:DBS:55998" }

  • Extrema berechnen

    Die normalen Extrema einer stetig differenzierbaren Funktion findet man an Nullstellen ihrer Ableitung (jedoch nicht unbedingt an allen!). Um die x-Werte der Hoch- und Tiefpunkte zu finden reicht es, die Nullstellen der 1. Ableitung zu finden und zu überprüfen, ob an diesen Stellen wirklich Extrema vorliegen.

    Details  
    { "Serlo": "DE:DBS:56096" }

  • Kurvendiskussion (Mathematik)

    In der Kurvendiskussion werden ausgewählte Eigenschaften einer Funktion und ihres Graphen untersucht. Bestandteile der Kurvendiskussion Eigenschaften berechnen Diese Liste enthält alle Eigenschaften, die man bei einer Funktion überprüfen kann: Definitionsbereich (mit ...

    Details  
    { "Serlo": "DE:DBS:55962" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite