Ergebnis der Suche

Ergebnis der Suche nach: ( (Systematikpfad: MATHEMATIK) und (Systematikpfad: "ZUORDNUNGEN, FUNKTIONEN") ) und (Quelle: Serlo)

Es wurden 80 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite

Treffer:
11 bis 20
  • e-Funktion (Mathematik)

    Die e-Funktion ist die natürliche Exponentialfunktion mit der Basis e, der Eulerschen Zahl. Ihre Umkehrfunktion ist der natürliche Logarithmus.

    Details  
    { "Serlo": "DE:DBS:55974" }

  • Allgemeine Form und Scheitelform einer quadratischen Funktion

    Die Gleichung einer Parabel oder einer quadratischen Funktion kann man in verschiedenen Formen angeben.

    Details  
    { "Serlo": "DE:DBS:56210" }

  • Amplitude (Mathematik)

    Die Amplitude ist die maximale Auslenkung einer periodisch wellenförmigen Funktion von ihrer Ruhelage aus. Periodisch bedeutet in diesem Falle, dass die Funktion in gleichen Abständen immer wieder dieselben Werte annimmt, bzw. anschaulich gesehen immer wieder dieselbe Form hat.

    Details  
    { "Serlo": "DE:DBS:55958" }

  • ln-Funktion (Mathematik)

    Die ln-Funktion (auch natürlicher Logarithmus) ist die Umkehrfunktion der e-Funktion.

    Details  
    { "Serlo": "DE:DBS:55982" }

  • Quadratische Gleichung (Mathematik)

    Eine quadratische Gleichung ist eine Gleichung mit einer bestimmten Form. Sie tritt meist bei der Nullstellenberechnug einer quadratischen Funktion auf.

    Details  
    { "Serlo": "DE:DBS:56084" }

  • Asymptote berechnen

    Für rationale Funktionen lässt sich einfach durch Vergleich der Grade von Zähler und Nenner bestimmen, ob diese Asymptoten im Unendlichen haben. Um diese konkret zu bestimmen, werden hier verschiedene Rechentechniken gezeigt.

    Details  
    { "Serlo": "DE:DBS:55981" }

  • Ableitung der Umkehrfunktion (Mathematik)

    Die Ableitung einer Umkehrfunktion lässt sich mithilfe einer bestimmten Formel bestimmen.

    Details  
    { "Serlo": "DE:DBS:56076" }

  • Regel von L’Hospital (Mathematik)

    Die Regel von L’Hospital ist ein Hilfsmittel zum Berechnen von Grenzwerten bei Brüchen von Funktionen f und g, wenn Zähler und Nenner entweder beide gegen 0 oder beide gegen (+ oder -) unendlich gehen.

    Details  
    { "Serlo": "DE:DBS:56018" }

  • Quadratische Funktion

    Eine quadratische Funktion ist ein Polynom zweiten Grades.

    Details  
    { "Serlo": "DE:DBS:55984" }

  • Differenzenquotient

    Der Differenzenquotient zwischen zwei Stellen x_1 und x_2 beschreibt die Steigung der Sekanten zwischen den Punkten P und Q.

    Details  
    { "Serlo": "DE:DBS:56008" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite