Ergebnis der Suche

Ergebnis der Suche nach: ( ( ( (Systematikpfad: MATHEMATIK) und (Systematikpfad: "ZUORDNUNGEN, FUNKTIONEN") ) und (Quelle: Serlo) ) und (Systematikpfad: INTEGRALRECHNUNG) ) und (Schlagwörter: "SEKUNDARSTUFE II")

Es wurden 7 Einträge gefunden


Treffer:
1 bis 7
  • Bestimmtes und unbestimmtes Integral

    Der Hauptunterschied zwischen einem bestimmten und einem unbestimmen Integral ist das Vorhandensein (bestimmtes Integral) bzw. Fehlen (unbestimmtes Integral) der Integrationsgrenzen.

    Details  
    { "Serlo": "DE:DBS:56088" }

  • Stammfunktion finden (Mathematik)

    Eine Stammfunktion F einer ursprünglichen, stetigen Funktion f ist eine differenzierbare Funktion, deren Ableitung wieder die ursprüngliche Funktion f ist. Umgekehrt ergibt das unbestimmte Integral über eine Funktion f alle Stammfunktionen F.

    Details  
    { "Serlo": "DE:DBS:55959" }

  • Integration durch Substitution

    Steht in einem Integral die Verknüpfung von zwei Funktionen (evtl. sogar multipliziert mit der Ableitung der inneren Funktion), kann Substitution zur Vereinfachung beitragen.

    Details  
    { "Serlo": "DE:DBS:56080" }

  • Uneigentliches Integral (Mathematik)

    Es kann vorkommen, dass eine Fläche unter einem Funktionsgraphen betrachtet wird, die in einer Richtung unbeschränkt ist. Dies ist dann der Fall, wenn die Funktion an mindestens einer Integralgrenze nicht definiert ist.

    Details  
    { "Serlo": "DE:DBS:56204" }

  • Integral (Mathematik)

    Das Integral ist ein Oberbegriff für das bestimmte und unbestimmte Integral. Ein bestimmtes Integral liefert einen Zahlenwert, während ein unbestimmtes Integral eine Funktion liefert.

    Details  
    { "Serlo": "DE:DBS:55971" }

  • Flächenberechnung mit Integralen

    Das Integral stellt einen orientierten Flächeninhalt dar, doch man kann damit auch Flächeninhalte allgemeinerer Flächen, die durch Einschluss verschiedener Funktionsgraphen gegeben sind, berechnen.

    Details  
    { "Serlo": "DE:DBS:56087" }

  • Partielle Integration (Mathematik)

    Die partielle Integration ist eine Methode zur Integration bestimmter Produkte zweier Funktionen. Man wendet sie oft an, wenn in einem Integral das Produkt zweier Funktionen steht, von denen die eine einfach zu integrieren und die andere leicht abzuleiten ist.

    Details  
    { "Serlo": "DE:DBS:56086" }

Vorschläge für alternative Suchbegriffe:

[ Mathematikunterricht [ Mathematik [ Differenzialrechnung [ Analytische Mathematik [ Funktion [ Analysis [ Geometrie [ Grafische Darstellung [ Fachdidaktik [ Angewandte Mathematik [ Volumen [ Infinitesimalrechnung [ Didaktische Grundlageninformation [ Algebra [ Stochastik [ Lehrerhilfe