Ergebnis der Suche

Ergebnis der Suche nach: ( ( (Systematikpfad: MATHEMATIK) und (Systematikpfad: "ZUORDNUNGEN, FUNKTIONEN") ) und (Quelle: Serlo) ) und (Systematikpfad: DIFFERENTIALRECHNUNG)

Es wurden 14 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Hauptsatz der Differential- und Integralrechnung

    Der Hauptsatz der Differential- und Integralrechnung (kurz HDI) oder Fundamentalsatz der Analysis führt die Berechnung bestimmter Integrale auf die Berechnung unbestimmter Integrale (also auf die Ermittlung von Stammfunktionen) zurück.

    Details  
    { "Serlo": "DE:DBS:56198" }

  • h-Methode (Mathematik)

    Die h-Methode ist eine andere Interpretation des Differentialquotienten. Anstatt x gegen x_0 laufen zu lassen, lässt man diesmal den Abstand gegen 0 laufen.

    Details  
    { "Serlo": "DE:DBS:56036" }

  • Differenzierbarkeit (Mathematik)

    Differenzierbarkeit ist eine Eigenschaft von Funktionen, die darüber Auskunft gibt ob und wo sich eine Funktion ableiten lässt. Eine Funktion f heißt differenzierbar an einer Stelle x_0 ihres Definitionsbereichs, falls der Differentialquotient existiert.

    Details  
    { "Serlo": "DE:DBS:55999" }

  • Monotonie (Mathematik)

    Eine reelle Funktion heißt monoton steigend (oder monoton wachsend), wenn für alle x,y aus der Definitionsmenge folgendes gilt...

    Details  
    { "Serlo": "DE:DBS:56129" }

  • Wendepunkt und Terrassenpunkt

    Ein Wendepunkt ist ein Punkt auf einem Funktionsgraphen, an dem sich die Krümmungsrichtung des Graphen ändert. Ist die Tangente durch diesen Punkt horizontal, so nennt man ihn einen Terrassen- oder Sattelpunkt.

    Details  
    { "Serlo": "DE:DBS:56000" }

  • Kettenregel (Mathematik)

    Die Kettenregel bildet eine Möglichkeit, die Ableitung der Verkettung zweier differenzierbarer Funktionen u und v auszurechnen.

    Details  
    { "Serlo": "DE:DBS:56072" }

  • Amplitude (Mathematik)

    Die Amplitude ist die maximale Auslenkung einer periodisch wellenförmigen Funktion von ihrer Ruhelage aus. Periodisch bedeutet in diesem Falle, dass die Funktion in gleichen Abständen immer wieder dieselben Werte annimmt, bzw. anschaulich gesehen immer wieder dieselbe Form hat.

    Details  
    { "Serlo": "DE:DBS:55958" }

  • Ableitung der Umkehrfunktion (Mathematik)

    Die Ableitung einer Umkehrfunktion lässt sich mithilfe einer bestimmten Formel bestimmen.

    Details  
    { "Serlo": "DE:DBS:56076" }

  • Regel von L’Hospital (Mathematik)

    Die Regel von L’Hospital ist ein Hilfsmittel zum Berechnen von Grenzwerten bei Brüchen von Funktionen f und g, wenn Zähler und Nenner entweder beide gegen 0 oder beide gegen (+ oder -) unendlich gehen.

    Details  
    { "Serlo": "DE:DBS:56018" }

  • Differenzenquotient

    Der Differenzenquotient zwischen zwei Stellen x_1 und x_2 beschreibt die Steigung der Sekanten zwischen den Punkten P und Q.

    Details  
    { "Serlo": "DE:DBS:56008" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite