Ergebnis der Suche

Ergebnis der Suche nach: ( ( (Systematikpfad: MATHEMATIK) und (Systematikpfad: "ZUORDNUNGEN, FUNKTIONEN") ) und (Quelle: Serlo) ) und (Schlagwörter: GYMNASIUM)

Es wurden 14 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Wendepunkt und Terrassenpunkt

    Ein Wendepunkt ist ein Punkt auf einem Funktionsgraphen, an dem sich die Krümmungsrichtung des Graphen ändert. Ist die Tangente durch diesen Punkt horizontal, so nennt man ihn einen Terrassen- oder Sattelpunkt.

    Details  
    { "Serlo": "DE:DBS:56000" }

  • Monotonieverhalten berechnen (Mathematik)

    Die Betrachtung des Monotonieverhaltens einer Funktion ist fester Bestandteil der Kurvendiskussion.

    Details  
    { "Serlo": "DE:DBS:56024" }

  • Diskriminante (Mathematik)

    An der Diskriminante kann man ablesen, wie viele Lösungen die quadratische Gleichung besitzt

    Details  
    { "Serlo": "DE:DBS:55930" }

  • Symmetrie von Graphen

    Graphen können achsensymmetrisch oder punktsymmetrisch sein. Bei besonderen Achsen bzw. Punkten gibt es einfache Formeln um Symmetrie nachzuweisen.

    Details  
    { "Serlo": "DE:DBS:56046" }

  • Bestimmtes und unbestimmtes Integral

    Der Hauptunterschied zwischen einem bestimmten und einem unbestimmen Integral ist das Vorhandensein (bestimmtes Integral) bzw. Fehlen (unbestimmtes Integral) der Integrationsgrenzen.

    Details  
    { "Serlo": "DE:DBS:56088" }

  • Funktionsgraphen stauchen und strecken

    Prinziell streckt man den Graphen einer Funktion in y-Richtungum Faktor a, indem man den Funktionsterm mit a multipliziert.

    Details  
    { "Serlo": "DE:DBS:56103" }

  • Stammfunktion finden (Mathematik)

    Eine Stammfunktion F einer ursprünglichen, stetigen Funktion f ist eine differenzierbare Funktion, deren Ableitung wieder die ursprüngliche Funktion f ist. Umgekehrt ergibt das unbestimmte Integral über eine Funktion f alle Stammfunktionen F.

    Details  
    { "Serlo": "DE:DBS:55959" }

  • Schnittpunkte zweier Funktionen berechnen

    Schnittpunkte von Funktionen sind die Punkte, an denen beide Funktionen den gleichen y-Wert besitzen. Mit diesem Wissen kann man die Schnittpunkte berechnen.

    Details  
    { "Serlo": "DE:DBS:56106" }

  • h-Methode (Mathematik)

    Die h-Methode ist eine andere Interpretation des Differentialquotienten. Anstatt x gegen x_0 laufen zu lassen, lässt man diesmal den Abstand gegen 0 laufen.

    Details  
    { "Serlo": "DE:DBS:56036" }

  • Kettenregel (Mathematik)

    Die Kettenregel bildet eine Möglichkeit, die Ableitung der Verkettung zweier differenzierbarer Funktionen u und v auszurechnen.

    Details  
    { "Serlo": "DE:DBS:56072" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite