Ergebnis der Suche

Ergebnis der Suche nach: ( ( ( (Systematikpfad: MATHEMATIK) und (Systematikpfad: "ZUORDNUNGEN, FUNKTIONEN") ) und (Quelle: Serlo) ) und (Bildungsebene: "SEKUNDARSTUFE II") ) und (Systematikpfad: DIFFERENTIALRECHNUNG)

Es wurden 11 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Hauptsatz der Differential- und Integralrechnung

    Der Hauptsatz der Differential- und Integralrechnung (kurz HDI) oder Fundamentalsatz der Analysis führt die Berechnung bestimmter Integrale auf die Berechnung unbestimmter Integrale (also auf die Ermittlung von Stammfunktionen) zurück.

    Details  
    { "Serlo": "DE:DBS:56198" }

  • h-Methode (Mathematik)

    Die h-Methode ist eine andere Interpretation des Differentialquotienten. Anstatt x gegen x_0 laufen zu lassen, lässt man diesmal den Abstand gegen 0 laufen.

    Details  
    { "Serlo": "DE:DBS:56036" }

  • Differenzierbarkeit (Mathematik)

    Differenzierbarkeit ist eine Eigenschaft von Funktionen, die darüber Auskunft gibt ob und wo sich eine Funktion ableiten lässt. Eine Funktion f heißt differenzierbar an einer Stelle x_0 ihres Definitionsbereichs, falls der Differentialquotient existiert.

    Details  
    { "Serlo": "DE:DBS:55999" }

  • Wendepunkt und Terrassenpunkt

    Ein Wendepunkt ist ein Punkt auf einem Funktionsgraphen, an dem sich die Krümmungsrichtung des Graphen ändert. Ist die Tangente durch diesen Punkt horizontal, so nennt man ihn einen Terrassen- oder Sattelpunkt.

    Details  
    { "Serlo": "DE:DBS:56000" }

  • Kettenregel (Mathematik)

    Die Kettenregel bildet eine Möglichkeit, die Ableitung der Verkettung zweier differenzierbarer Funktionen u und v auszurechnen.

    Details  
    { "Serlo": "DE:DBS:56072" }

  • Ableitung der Umkehrfunktion (Mathematik)

    Die Ableitung einer Umkehrfunktion lässt sich mithilfe einer bestimmten Formel bestimmen.

    Details  
    { "Serlo": "DE:DBS:56076" }

  • Regel von L’Hospital (Mathematik)

    Die Regel von L’Hospital ist ein Hilfsmittel zum Berechnen von Grenzwerten bei Brüchen von Funktionen f und g, wenn Zähler und Nenner entweder beide gegen 0 oder beide gegen (+ oder -) unendlich gehen.

    Details  
    { "Serlo": "DE:DBS:56018" }

  • Amplitude (Mathematik)

    Die Amplitude ist die maximale Auslenkung einer periodisch wellenförmigen Funktion von ihrer Ruhelage aus. Periodisch bedeutet in diesem Falle, dass die Funktion in gleichen Abständen immer wieder dieselben Werte annimmt, bzw. anschaulich gesehen immer wieder dieselbe Form hat.

    Details  
    { "Serlo": "DE:DBS:55958" }

  • Tangente an Graph

    Eine Tangente an einen Graphen ist eine Gerade, die den Graphen einer Funktion f an einer bestimmten Stelle berührt, d. h. die Steigung der Tangente und der Funktion stimmen am Berührpunkt überein.

    Details  
    { "Serlo": "DE:DBS:56279" }

  • Potenzfunktion (Mathematik)

    Eine Potenzfunktion ist eine Funktion, deren Funktionsterm eine bestimmte Form aufweist.

    Details  
    { "Serlo": "DE:DBS:56017" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite