Ergebnis der Suche

Ergebnis der Suche nach: ( ( (Systematikpfad: MATHEMATIK) und (Systematikpfad: "ZUORDNUNGEN, FUNKTIONEN") ) und (Quelle: Serlo) ) und (Bildungsebene: "SEKUNDARSTUFE I")

Es wurden 39 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Stetigkeit (Mathematik)

    Eine Funktion f heißt genau dann stetig an einer Stelle x_0, wenn der Funktionswert an dieser Stelle mit sowohl links- als auch rechtsseitigem Grenzwert identisch ist.

    Details  
    { "Serlo": "DE:DBS:55972" }

  • Satz von Vieta (Mathematik)

    Der Satz von Vieta bietet eine Möglichkeit, das Raten von Lösungen einer quadratischen Gleichung zu erleichtern (vor allem, wenn diese ganzzahlig sind).

    Details  
    { "Serlo": "DE:DBS:55977" }

  • Monotonie (Mathematik)

    Eine reelle Funktion heißt monoton steigend (oder monoton wachsend), wenn für alle x,y aus der Definitionsmenge folgendes gilt...

    Details  
    { "Serlo": "DE:DBS:56129" }

  • Differenzenquotient

    Der Differenzenquotient zwischen zwei Stellen x_1 und x_2 beschreibt die Steigung der Sekanten zwischen den Punkten P und Q.

    Details  
    { "Serlo": "DE:DBS:56008" }

  • Funktionenschar (Mathematik)

    Eine Funktionenschar ist eine Menge von Funktionen , die neben der Variable x auch noch einen veränderlichen Parameter im Funktionsterm enthält.

    Details  
    { "Serlo": "DE:DBS:55980" }

  • Grenzwertbetrachtung (Mathematik)

    Die Grenzwertbetrachtung dient dazu, das Verhalten einer Funktion und ihres Graphen entweder im Unendlichen oder an einer bestimmten Stelle (meist Definitionslücke) zu ermitteln.

    Details  
    { "Serlo": "DE:DBS:55973" }

  • Ungleichung (Mathematik)

    Eine Ungleichung ist wie eine Gleichung , nur das anstatt des = ein , Zeichen steht. Links und rechts von diesem Zeichen stehen immer Terme.

    Details  
    { "Serlo": "DE:DBS:56170" }

  • Steigung (Mathematik)

    Die Steigung einer Funktion (auch genannt Anstieg) ist ein Maß dafür, wie steil der Graph einer Funktion ansteigt oder abfällt. Mathematisch lässt sich die Steigung beschreiben als das Verhältnis von der Abweichung in y-Richtung zu der Abweichung in x-Richtung.

    Details  
    { "Serlo": "DE:DBS:55941" }

  • Geradensteigung (Mathematik)

    Dieser Artikel beschäftigt sich mit Geraden als Graphen linearer Funktionen, also Funktionen der Form f(x)=m.

    Details  
    { "Serlo": "DE:DBS:56066" }

  • Distributivgesetz (Mathematik)

    Mit dem Distributivgesetz kann man manche Rechenaufgaben vereinfachen.

    Details  
    { "Serlo": "DE:DBS:56012" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 Eine Seite vor Zur letzten Seite