Ergebnis der Suche

Ergebnis der Suche nach: ( (Systematikpfad: MATHEMATIK) und (Systematikpfad: "ZUORDNUNGEN, FUNKTIONEN") ) und (Bildungsebene: "SEKUNDARSTUFE II")

Es wurden 120 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
71 bis 80
  • Krümmung eines Funktionsgraphen

    Meist interessiert man sich für die Krümmung bestimmter Abschnitte des Graphen. Dazu betrachtet man die zweite Ableitung.

    Details  
    { "Serlo": "DE:DBS:55998" }

  • Extrema berechnen

    Die normalen Extrema einer stetig differenzierbaren Funktion findet man an Nullstellen ihrer Ableitung (jedoch nicht unbedingt an allen!). Um die x-Werte der Hoch- und Tiefpunkte zu finden reicht es, die Nullstellen der 1. Ableitung zu finden und zu überprüfen, ob an diesen Stellen wirklich Extrema vorliegen.

    Details  
    { "Serlo": "DE:DBS:56096" }

  • Kurvendiskussion (Mathematik)

    In der Kurvendiskussion werden ausgewählte Eigenschaften einer Funktion und ihres Graphen untersucht. Bestandteile der Kurvendiskussion Eigenschaften berechnen Diese Liste enthält alle Eigenschaften, die man bei einer Funktion überprüfen kann: Definitionsbereich (mit ...

    Details  
    { "Serlo": "DE:DBS:55962" }

  • Quotientenregel (Mathematik)

    Die Quotientenregel bietet eine Möglichkeit, die Ableitung eines Quotienten zweier differenzierbarer Funktionen u und v zu berechnen.

    Details  
    { "Serlo": "DE:DBS:56074" }

  • Symmetrie von Graphen

    Graphen können achsensymmetrisch oder punktsymmetrisch sein. Bei besonderen Achsen bzw. Punkten gibt es einfache Formeln um Symmetrie nachzuweisen.

    Details  
    { "Serlo": "DE:DBS:56046" }

  • Differentiationsregeln

    Auf dieser Seite von mathe-online.at werden viele Aspekte der Differentialrechnung sehr anschaulich und interaktiv erklärt: Das Tangentenproblem, Ableitung als Grenzwert, Ableitungsregeln... .

    Details  
    { "HE": "DE:HE:2833281" }

  • Mathematik-digital/Einführung in die Integralrechnung

    In demLernpfad können die Schüler die grundlegenden Zusammenhänge der Integralrechnung anhand vieler interaktiver Übungen entdecken.

    Details  
    { "DBS": "DE:DBS:54984" }

  • Mathematik-digital/Einführung in die Differentialrechnung

    Am Ende des 17. Jahrhunderts gingen Gottfried Wilhelm Leibniz und Isaac Newton der mathematischen Bestimmung des Änderungsverhaltens von Funktionen genauer nach und entwickelten Ideen, auf deren Grundlage die Differentialrechnung entwickelt wurde. Die Differentialrechnung war ein wichtiger Baustein in der Weiterentwicklung der Mathematik und der Naturwissenschaften und ist ...

    Details  
    { "DBS": "DE:DBS:54808" }

  • Mathematik-digital/Rechnen mit Quadratwurzeln

    Übungslernpfad zum Wiederholen und Vertiefen des Rechnens mit Quadratwurzeln

    Details  
    { "ZUM": "DE:DBS:55039" }

  • Amplitude (Mathematik)

    Die Amplitude ist die maximale Auslenkung einer periodisch wellenförmigen Funktion von ihrer Ruhelage aus. Periodisch bedeutet in diesem Falle, dass die Funktion in gleichen Abständen immer wieder dieselben Werte annimmt, bzw. anschaulich gesehen immer wieder dieselbe Form hat.

    Details  
    { "Serlo": "DE:DBS:55958" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite