Ergebnis der Suche

Ergebnis der Suche nach: ( ( (Systematikpfad: MATHEMATIK) und (Systematikpfad: "ZUORDNUNGEN, FUNKTIONEN") ) und (Bildungsebene: "SEKUNDARSTUFE II") ) und (Schlagwörter: "FUNKTION (MATH)")

Es wurden 41 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Amplitude (Mathematik)

    Die Amplitude ist die maximale Auslenkung einer periodisch wellenförmigen Funktion von ihrer Ruhelage aus. Periodisch bedeutet in diesem Falle, dass die Funktion in gleichen Abständen immer wieder dieselben Werte annimmt, bzw. anschaulich gesehen immer wieder dieselbe Form hat.

    Details  
    { "Serlo": "DE:DBS:55958" }

  • Ober- und Untersumme

    Die vom Funktionsgraphen und einem Intervall auf der x- Achse eingeschlossene Fläche lässt sich näherungsweise als Ober- bzw. Untersumme bestimmen. Zudem lässt sich das Integral als Grenzwert von Ober- bzw. Untersummen auffassen.

    Details  
    { "Serlo": "DE:DBS:56203" }

  • Differenzierbarkeit (Mathematik)

    Differenzierbarkeit ist eine Eigenschaft von Funktionen, die darüber Auskunft gibt ob und wo sich eine Funktion ableiten lässt. Eine Funktion f heißt differenzierbar an einer Stelle x_0 ihres Definitionsbereichs, falls der Differentialquotient existiert.

    Details  
    { "Serlo": "DE:DBS:55999" }

  • Wendepunkt und Terrassenpunkt

    Ein Wendepunkt ist ein Punkt auf einem Funktionsgraphen, an dem sich die Krümmungsrichtung des Graphen ändert. Ist die Tangente durch diesen Punkt horizontal, so nennt man ihn einen Terrassen- oder Sattelpunkt.

    Details  
    { "Serlo": "DE:DBS:56000" }

  • e-Funktion (Mathematik)

    Die e-Funktion ist die natürliche Exponentialfunktion mit der Basis e, der Eulerschen Zahl. Ihre Umkehrfunktion ist der natürliche Logarithmus.

    Details  
    { "Serlo": "DE:DBS:55974" }

  • ln-Funktion (Mathematik)

    Die ln-Funktion (auch natürlicher Logarithmus) ist die Umkehrfunktion der e-Funktion.

    Details  
    { "Serlo": "DE:DBS:55982" }

  • Ableitung der Umkehrfunktion (Mathematik)

    Die Ableitung einer Umkehrfunktion lässt sich mithilfe einer bestimmten Formel bestimmen.

    Details  
    { "Serlo": "DE:DBS:56076" }

  • Grenzwert bestimmen

    Der Grenzwert einer Summe ist die Summe der Grenzwerte und der Grenzwert eines Produktes ist das Produkt der Grenzwerte.

    Details  
    { "Serlo": "DE:DBS:56100" }

  • Sprungstelle

    Eine Sprungstelle ist eine Stelle x_0, an der der linksseitige und der rechtsseitige Grenzwert unterschiedlich sind.

    Details  
    { "Serlo": "DE:DBS:56038" }

  • Exponentielles Wachstum (Mathematik)

    Exponentielles Wachstum bescheibt Wachstums- oder Zerfallsprozesse, die von prozentualen Änderungen abhängig sind. Mathematisch können solche Vorgänge mit einer Formel beschrieben werden.

    Details  
    { "Serlo": "DE:DBS:56191" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite