Ergebnis der Suche

Ergebnis der Suche nach: ( ( (Systematikpfad: MATHEMATIK) und (Systematikpfad: "ZUORDNUNGEN, FUNKTIONEN") ) und (Bildungsebene: "SEKUNDARSTUFE II") ) und (Quelle: Serlo)

Es wurden 49 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Ober- und Untersumme

    Die vom Funktionsgraphen und einem Intervall auf der x- Achse eingeschlossene Fläche lässt sich näherungsweise als Ober- bzw. Untersumme bestimmen. Zudem lässt sich das Integral als Grenzwert von Ober- bzw. Untersummen auffassen.

    Details  
    { "Serlo": "DE:DBS:56203" }

  • Hauptsatz der Differential- und Integralrechnung

    Der Hauptsatz der Differential- und Integralrechnung (kurz HDI) oder Fundamentalsatz der Analysis führt die Berechnung bestimmter Integrale auf die Berechnung unbestimmter Integrale (also auf die Ermittlung von Stammfunktionen) zurück.

    Details  
    { "Serlo": "DE:DBS:56198" }

  • h-Methode (Mathematik)

    Die h-Methode ist eine andere Interpretation des Differentialquotienten. Anstatt x gegen x_0 laufen zu lassen, lässt man diesmal den Abstand gegen 0 laufen.

    Details  
    { "Serlo": "DE:DBS:56036" }

  • Scheitelpunkt einer Parabel

    Der Scheitelpunkt ist der höchste bzw. tiefste Punkt (Extrempunkt) einer Parabel.

    Details  
    { "Serlo": "DE:DBS:56064" }

  • Differenzierbarkeit (Mathematik)

    Differenzierbarkeit ist eine Eigenschaft von Funktionen, die darüber Auskunft gibt ob und wo sich eine Funktion ableiten lässt. Eine Funktion f heißt differenzierbar an einer Stelle x_0 ihres Definitionsbereichs, falls der Differentialquotient existiert.

    Details  
    { "Serlo": "DE:DBS:55999" }

  • Wendepunkt und Terrassenpunkt

    Ein Wendepunkt ist ein Punkt auf einem Funktionsgraphen, an dem sich die Krümmungsrichtung des Graphen ändert. Ist die Tangente durch diesen Punkt horizontal, so nennt man ihn einen Terrassen- oder Sattelpunkt.

    Details  
    { "Serlo": "DE:DBS:56000" }

  • Kettenregel (Mathematik)

    Die Kettenregel bildet eine Möglichkeit, die Ableitung der Verkettung zweier differenzierbarer Funktionen u und v auszurechnen.

    Details  
    { "Serlo": "DE:DBS:56072" }

  • e-Funktion (Mathematik)

    Die e-Funktion ist die natürliche Exponentialfunktion mit der Basis e, der Eulerschen Zahl. Ihre Umkehrfunktion ist der natürliche Logarithmus.

    Details  
    { "Serlo": "DE:DBS:55974" }

  • Allgemeine Form und Scheitelform einer quadratischen Funktion

    Die Gleichung einer Parabel oder einer quadratischen Funktion kann man in verschiedenen Formen angeben.

    Details  
    { "Serlo": "DE:DBS:56210" }

  • ln-Funktion (Mathematik)

    Die ln-Funktion (auch natürlicher Logarithmus) ist die Umkehrfunktion der e-Funktion.

    Details  
    { "Serlo": "DE:DBS:55982" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite