Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: VIETA) und (Schlagwörter: VIETA)

Es wurden 12 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Der Satz von Vieta

    Der Satz von Vieta wird anschaulich erklärt und anhand von Beispielen eingeübt.

    Details  
    { "Select.HE": "DE:Select.HE:1498837" }

  • Satz von Vieta


    Details  
    { "HE": "DE:HE:1322835" }

  • Linearfaktorzerlegung über Nullstellen, Satz von Vieta; Beispiel 1 | B.05.02

    Wenn man bei der Linearfaktorzerlegung weder Ausklammern kann, noch eine binomische Formel anwenden kann, so hat man noch eine Chance. Man kann die Zerlegung über die Nullstellen versuchen. Dazu braucht man natürlich die Nullstellen der Funktion. Nehmen wir an, die Nullstellen sind x1, x2, x3, und die Zahl vor der höchsten Potenz heißt „a“. Nun kann man die Funktion ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009885" }

  • Linearfaktorzerlegung über Nullstellen, Satz von Vieta; Beispiel 3 | B.05.02

    Wenn man bei der Linearfaktorzerlegung weder Ausklammern kann, noch eine binomische Formel anwenden kann, so hat man noch eine Chance. Man kann die Zerlegung über die Nullstellen versuchen. Dazu braucht man natürlich die Nullstellen der Funktion. Nehmen wir an, die Nullstellen sind x1, x2, x3, und die Zahl vor der höchsten Potenz heißt „a“. Nun kann man die Funktion ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009887" }

  • Linearfaktorzerlegung über Nullstellen, Satz von Vieta; Beispiel 2 | B.05.02

    Wenn man bei der Linearfaktorzerlegung weder Ausklammern kann, noch eine binomische Formel anwenden kann, so hat man noch eine Chance. Man kann die Zerlegung über die Nullstellen versuchen. Dazu braucht man natürlich die Nullstellen der Funktion. Nehmen wir an, die Nullstellen sind x1, x2, x3, und die Zahl vor der höchsten Potenz heißt „a“. Nun kann man die Funktion ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009886" }

  • Linearfaktorzerlegung: kurze Einführung | B.05

    Eine Linearfaktorzerlegung bedeutet, dass man eine Funktion so umschreibt, dass sie nur noch aus Klammern besteht, welche mit „Mal“ verbunden sind. Innerhalb der Klammern darf das „x“ keine Hochzahl haben. Z.B. schreibt man x²+6x+5 als Linearfaktorzerlegung um in: (x+5)(x+1). Die einfache Linearfaktorzerlegung geht über Ausklammern oder binomische Formeln, wenn´s etwas ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009878" }

  • Linearfaktorzerlegung: so einfach geht's | B.05.01

    Wenn man Glück hat, lässt sich aus der Funktion so viel ausklammern, dass in der Klammer nur Zahlen übrig sind und ein „x“ ohne Hochzahl. In der Klammer steht demnach ein linearer Term. Vielleicht kann man auch eine binomische Formel anwenden. (Ist hilfreich, wenn man sie kann). Schwuppdiwupp ist die Linearfaktorzerlegung fertig.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009879" }

  • Linearfaktorzerlegung: so einfach geht's, Beispiel 3 | B.05.01

    Wenn man Glück hat, lässt sich aus der Funktion so viel ausklammern, dass in der Klammer nur Zahlen übrig sind und ein „x“ ohne Hochzahl. In der Klammer steht demnach ein linearer Term. Vielleicht kann man auch eine binomische Formel anwenden. (Ist hilfreich, wenn man sie kann). Schwuppdiwupp ist die Linearfaktorzerlegung fertig.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009882" }

  • Linearfaktorzerlegung: so einfach geht's, Beispiel 2 | B.05.01

    Wenn man Glück hat, lässt sich aus der Funktion so viel ausklammern, dass in der Klammer nur Zahlen übrig sind und ein „x“ ohne Hochzahl. In der Klammer steht demnach ein linearer Term. Vielleicht kann man auch eine binomische Formel anwenden. (Ist hilfreich, wenn man sie kann). Schwuppdiwupp ist die Linearfaktorzerlegung fertig.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009881" }

  • Linearfaktorzerlegung: so einfach geht's, Beispiel 4 | B.05.01

    Wenn man Glück hat, lässt sich aus der Funktion so viel ausklammern, dass in der Klammer nur Zahlen übrig sind und ein „x“ ohne Hochzahl. In der Klammer steht demnach ein linearer Term. Vielleicht kann man auch eine binomische Formel anwenden. (Ist hilfreich, wenn man sie kann). Schwuppdiwupp ist die Linearfaktorzerlegung fertig.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009883" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite