Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: VERFAHREN) und (Bildungsebene: "SEKUNDARSTUFE I")

Es wurden 347 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Chemische und physikalische Verfahren

    Toll animiertes Lernprogramm (LTAM)

    Details  
    { "Select.HE": "DE:Select.HE:1038756" }

  • Gauß-Verfahren: Lineares Gleichungssystem lösen | M.02

    Das gängigste Lösungsverfahren für ein Lineares Gleichungssystem ist das Gauß-Verfahren. Dafür stellt man sich die Diagonale des LGS vor und multipliziert und verrechnet nun die Gleichungen derart, dass man unter der Diagonalen nur noch Nullen hat. Nun kann man die Lösungen von „x1“, „x2“, „x3“, .. bestimmen, welche zusammen den Lösungsvektor ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010137" }

  • BVG: Parteiverbotsverfahren

    Das Bundesverfassungsgericht informiert über Parteiverbotsverfahren.

    Details  
    { "HE": "DE:HE:2969837" }

  • LGS lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 4 | M.02.01

    Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010142" }

  • LGS lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 1 | M.02.01

    Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010139" }

  • Gauß'sches Eliminationsverfahren

    Gaußsches Eliminationsverfahren. Theoretische Grundlagen und programmierte Realisierung. Facharbeit von Florian Michahelles, Abiturjahrgang 1992/1994, Werner-von-Siemens-Gymnasium Weißenburg/Bay. .Diese Facharbeit behandelt drei Verfahren zur Lösung linearer Gleichungssysteme. Im ersten werden zunächst die theoretischen Grundlagen der Verfahren dargelegt, im zweiten Teil ...

    Details  
    { "DBS": "DE:DBS:7332" }

  • LGS lösen: eindeutige Lösung mit Gauß-Verfahren | M.02.01

    Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010138" }

  • LGS lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 3 | M.02.01

    Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010141" }

  • LGS lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 2 | M.02.01

    Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010140" }

  • Mit Newton-Verfahren Nullstellen bestimmen, Beispiel 1 | A.32.02

    Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Newton-Verfahren (auch: Newton-Iteration) verwendet man, um Nullstellen einer Gleichung zumindest näherungsweise zu bestimmen. Für die Newtoniteration gibt es eine Formel. In diese Formel setzt man einen (beliebigen) x-Wert ein und erhält als Ergebnis ein besseren x-Wert, also einen x-Wert der näher an ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009361" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite