Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: VEKTOR) und (Quelle: "Bildungsmediathek NRW")

Es wurden 67 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Affine Abbildung; Eigenvektor, Beispiel 6 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010275" }

  • Affine Abbildung; Eigenvektor, Beispiel 3 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010272" }

  • Affine Abbildung; Eigenvektor, Beispiel 4 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010273" }

  • Affine Abbildung; Eigenvektor, Beispiel 1 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010270" }

  • Fixvektor, stationäre Verteilung; Beispiel 1 | M.07.03

    Im Normalfall gibt es zu jeder Populationsmatrix eine Verteilung zwischen den verschiedenen Stationen, die die Eigenschaft hat, sich im Laufe der Zeit nicht zu ändern. Diese Verteilung heißt „Fixvektor“ oder „Fixpunkt“ oder „stationäre Verteilung“. Zum Berechnen setzt man immer gleich an: (Populationsmatrix) mal (unbekannter Vektor) gleich (nochmal unbekannter ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010247" }

  • Fixvektor, stationäre Verteilung;, Beispiel 3 | M.07.03

    Im Normalfall gibt es zu jeder Populationsmatrix eine Verteilung zwischen den verschiedenen Stationen, die die Eigenschaft hat, sich im Laufe der Zeit nicht zu ändern. Diese Verteilung heißt „Fixvektor“ oder „Fixpunkt“ oder „stationäre Verteilung“. Zum Berechnen setzt man immer gleich an: (Populationsmatrix) mal (unbekannter Vektor) gleich (nochmal unbekannter ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010249" }

  • Fixvektor, stationäre Verteilung | M.07.03

    Im Normalfall gibt es zu jeder Populationsmatrix eine Verteilung zwischen den verschiedenen Stationen, die die Eigenschaft hat, sich im Laufe der Zeit nicht zu ändern. Diese Verteilung heißt „Fixvektor“ oder „Fixpunkt“ oder „stationäre Verteilung“. Zum Berechnen setzt man immer gleich an: (Populationsmatrix) mal (unbekannter Vektor) gleich (nochmal unbekannter ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010246" }

  • Affine Abbildung; Eigenvektor | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010269" }

  • Affine Abbildung; Eigenvektor, Beispiel 5 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010274" }

  • Fixvektor, stationäre Verteilung; Beispiel 2 | M.07.03

    Im Normalfall gibt es zu jeder Populationsmatrix eine Verteilung zwischen den verschiedenen Stationen, die die Eigenschaft hat, sich im Laufe der Zeit nicht zu ändern. Diese Verteilung heißt „Fixvektor“ oder „Fixpunkt“ oder „stationäre Verteilung“. Zum Berechnen setzt man immer gleich an: (Populationsmatrix) mal (unbekannter Vektor) gleich (nochmal unbekannter ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010248" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite