Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: UNGLEICHUNG) und (Quelle: "learn:line NRW")

Es wurden 34 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 Eine Seite vor Zur letzten Seite

Treffer:
21 bis 30
  • Quadratische Ungleichungen, Beispiel 1 | A.26.02

    Eine quadratische Ungleichung ist natürlich eine Ungleichung, in welcher „x²“ vorkommt. Es gibt zwei gute Vorgehensweisen dafür. Entweder über die quadratische Ergänzung oder man bestimmt die Nullstellen der quadratischen Parabel, überlegt, wie die Parabel liegt und weiß damit, in welchem Bereich die Parabel positiv oder negativ ist.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009181" }

  • Tschebyscheff-Ungleichung, Beispiel 1 | Wahrscheinlichkeitsrechnung Formeln W.15.07

    Die Tschebyscheff-Ungleichung ist eine relativ einfache Formel mit welcher man bestimmen kann, wie hoch die Wahrscheinlichkeit ist, dass ein Ereignis um einen bestimmten Wert vom Erwartungswert abweicht. Man braucht dazu nur den Erwartungswert und die Standardabweichung. (Tschebyscheff taucht auch in der Schreibweise: Tschebyschew oder Tschebyschow auf).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010779" }

  • Tschebyscheff-Ungleichung, Beispiel 2 | Wahrscheinlichkeitsrechnung Formeln W.15.07

    Die Tschebyscheff-Ungleichung ist eine relativ einfache Formel mit welcher man bestimmen kann, wie hoch die Wahrscheinlichkeit ist, dass ein Ereignis um einen bestimmten Wert vom Erwartungswert abweicht. Man braucht dazu nur den Erwartungswert und die Standardabweichung. (Tschebyscheff taucht auch in der Schreibweise: Tschebyschew oder Tschebyschow auf).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010780" }

  • Tschebyscheff-Ungleichung, Beispiel 3 | Wahrscheinlichkeitsrechnung Formeln W.15.07

    Die Tschebyscheff-Ungleichung ist eine relativ einfache Formel mit welcher man bestimmen kann, wie hoch die Wahrscheinlichkeit ist, dass ein Ereignis um einen bestimmten Wert vom Erwartungswert abweicht. Man braucht dazu nur den Erwartungswert und die Standardabweichung. (Tschebyscheff taucht auch in der Schreibweise: Tschebyschew oder Tschebyschow auf).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010781" }

  • Tschebyscheff-Ungleichung | Wahrscheinlichkeitsrechnung Formeln W.15.07

    Die Tschebyscheff-Ungleichung ist eine relativ einfache Formel mit welcher man bestimmen kann, wie hoch die Wahrscheinlichkeit ist, dass ein Ereignis um einen bestimmten Wert vom Erwartungswert abweicht. Man braucht dazu nur den Erwartungswert und die Standardabweichung. (Tschebyscheff taucht auch in der Schreibweise: Tschebyschew oder Tschebyschow auf).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010778" }

  • Ungleichungen mit Brüchen, Beispiel 3 | A.26.04

    Wenn Ungleichungen anfangen hässlich zu werden, ist das meist mit Brüchen verbunden. Man braucht im Normalfall eine Fallunterscheidung (oder mehrere), Alles nicht schön. Man kann die Fallunterscheidungen umgehen, wenn man alle Zähler- und alle Nennernullstellen berechnet, diese als Intervallgrenzen verwendet und nun für jedes entstandene Intervall prüft, ob die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009197" }

  • Ungleichungen mit Brüchen, Beispiel 2 | A.26.04

    Wenn Ungleichungen anfangen hässlich zu werden, ist das meist mit Brüchen verbunden. Man braucht im Normalfall eine Fallunterscheidung (oder mehrere), Alles nicht schön. Man kann die Fallunterscheidungen umgehen, wenn man alle Zähler- und alle Nennernullstellen berechnet, diese als Intervallgrenzen verwendet und nun für jedes entstandene Intervall prüft, ob die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009196" }

  • Ungleichungen mit Brüchen | A.26.04

    Wenn Ungleichungen anfangen hässlich zu werden, ist das meist mit Brüchen verbunden. Man braucht im Normalfall eine Fallunterscheidung (oder mehrere), Alles nicht schön. Man kann die Fallunterscheidungen umgehen, wenn man alle Zähler- und alle Nennernullstellen berechnet, diese als Intervallgrenzen verwendet und nun für jedes entstandene Intervall prüft, ob die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009194" }

  • Ungleichungen mit Brüchen, Beispiel 1 | A.26.04

    Wenn Ungleichungen anfangen hässlich zu werden, ist das meist mit Brüchen verbunden. Man braucht im Normalfall eine Fallunterscheidung (oder mehrere), Alles nicht schön. Man kann die Fallunterscheidungen umgehen, wenn man alle Zähler- und alle Nennernullstellen berechnet, diese als Intervallgrenzen verwendet und nun für jedes entstandene Intervall prüft, ob die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009195" }

  • Ungleichungen | A.26

    Eine Ungleichung hat kein Gleich-Zeichen, sondern ein Ungleichheits-Zeichen, also ein „Kleiner-Zeichen“ oder ein „Größer-Zeichen“ (bzw. „kleiner gleich“ oder „größer gleich“). Man behandelt Ungleichungen genau wie Gleichungen, nur dass sich das Ungleichheitszeichen umdreht, wenn man mit einer negativen Zahl multipliziert oder durch eine negative Zahl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009172" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 Eine Seite vor Zur letzten Seite