Ergebnis der Suche

Ergebnis der Suche nach: ( (Freitext: STREUUNG) und (Schlagwörter: STANDARDABWEICHUNG) ) und (Schlagwörter: DURCHSCHNITT)

Es wurden 4 Einträge gefunden


Treffer:
1 bis 4
  • Varianz, Standardabweichung, Erwartungswert und wie man richtig damit rechnet | W.11.05

    Es gibt interessanterweise nur zwei Größen, die man braucht um eine recht gute Prognose für fast alle zufälligen Verteilungen des Universums anzugeben. Zum einen den Durchschnittswert ( = Erwartungswert ), zum anderen die Standardabweichung ( = Streuung ). Die Varianz ist eigentlich nur das Quadrat der Standardabweichung und braucht man im Prinzip eigentlich nie. (Beim ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010692" }

  • Varianz, Standardabweichung, Erwartungswert und wie man richtig damit rechnet; Beispiel 1 | W.11.05

    Es gibt interessanterweise nur zwei Größen, die man braucht um eine recht gute Prognose für fast alle zufälligen Verteilungen des Universums anzugeben. Zum einen den Durchschnittswert ( = Erwartungswert ), zum anderen die Standardabweichung ( = Streuung ). Die Varianz ist eigentlich nur das Quadrat der Standardabweichung und braucht man im Prinzip eigentlich nie. (Beim ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010693" }

  • Varianz, Standardabweichung, Erwartungswert und wie man richtig damit rechnet; Beispiel 3 | W.11.05

    Es gibt interessanterweise nur zwei Größen, die man braucht um eine recht gute Prognose für fast alle zufälligen Verteilungen des Universums anzugeben. Zum einen den Durchschnittswert ( = Erwartungswert ), zum anderen die Standardabweichung ( = Streuung ). Die Varianz ist eigentlich nur das Quadrat der Standardabweichung und braucht man im Prinzip eigentlich nie. (Beim ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010695" }

  • Varianz, Standardabweichung, Erwartungswert und wie man richtig damit rechnet; Beispiel 2 | W.11.05

    Es gibt interessanterweise nur zwei Größen, die man braucht um eine recht gute Prognose für fast alle zufälligen Verteilungen des Universums anzugeben. Zum einen den Durchschnittswert ( = Erwartungswert ), zum anderen die Standardabweichung ( = Streuung ). Die Varianz ist eigentlich nur das Quadrat der Standardabweichung und braucht man im Prinzip eigentlich nie. (Beim ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010694" }

Vorschläge für alternative Suchbegriffe:

[ Mathematikunterricht [ Statistik [ Physik [ Mathematik [ Mittelwert [ Median [ Lernbehinderter [ Förderschule [ Schulphysik [ Physikunterricht [ Varianz [ Stichprobe [ Grafische Darstellung [ Kernphysik [ Atomphysik [ Tafelbild