Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: SKALARPRODUKT) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER")

Es wurden 54 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Winkel, Skalarprodukt, Kreuzprodukt, Dreiecksfläche | V.05

    Hier sind nur ein paar Themen, die sonst nirgendwo sonst reinpassen. Winkel, Skalarprodukt, Kreuzprodukt, Dreiecksflächen und diverses Anderes.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010485" }

  • Skalarprodukt: so kann man Vektoren multiplizieren. Beispiel 3 | V.05.02

    Will man zwei Vektoren multiplizieren, macht man das mit dem Skalarprodukt. Dafür multipliziert man die ersten beiden ersten Einträge der Vektoren, dann die beiden zweiten Einträge, und die dritten Einträge. Die drei Ergebnisse werden ADDIERT, das Ergebnis ist eine Zahl. Ist dieses Ergebnis Null, so stehen die beiden Vektoren senkrecht aufeinander. Das ist die wichtigste ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010496" }

  • Skalarprodukt: so kann man Vektoren multiplizieren | V.05.02

    Will man zwei Vektoren multiplizieren, macht man das mit dem Skalarprodukt. Dafür multipliziert man die ersten beiden ersten Einträge der Vektoren, dann die beiden zweiten Einträge, und die dritten Einträge. Die drei Ergebnisse werden ADDIERT, das Ergebnis ist eine Zahl. Ist dieses Ergebnis Null, so stehen die beiden Vektoren senkrecht aufeinander. Das ist die wichtigste ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010493" }

  • Skalarprodukt: so kann man Vektoren multiplizieren. Beispiel 2 | V.05.02

    Will man zwei Vektoren multiplizieren, macht man das mit dem Skalarprodukt. Dafür multipliziert man die ersten beiden ersten Einträge der Vektoren, dann die beiden zweiten Einträge, und die dritten Einträge. Die drei Ergebnisse werden ADDIERT, das Ergebnis ist eine Zahl. Ist dieses Ergebnis Null, so stehen die beiden Vektoren senkrecht aufeinander. Das ist die wichtigste ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010495" }

  • Skalarprodukt: so kann man Vektoren multiplizieren. Beispiel 1 | V.05.02

    Will man zwei Vektoren multiplizieren, macht man das mit dem Skalarprodukt. Dafür multipliziert man die ersten beiden ersten Einträge der Vektoren, dann die beiden zweiten Einträge, und die dritten Einträge. Die drei Ergebnisse werden ADDIERT, das Ergebnis ist eine Zahl. Ist dieses Ergebnis Null, so stehen die beiden Vektoren senkrecht aufeinander. Das ist die wichtigste ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010494" }

  • Flip the Cassroom: Skalarprodukt, orthogonale Vektoren

    In diesem Lernvideo von Flip the Classroom wird die Berechnung des Skalarproduktes vorgestellt und die Orthogonalitätsbedingung für Vektoren thematisiert. Anschließend werden typische Aufgaben berechnet.

    Details  
    { "HE": [] }

  • Skalarprodukt (Mathematik)

    Das Skalarprodukt ist eine Multiplikation von zwei Vektoren. Sein Ergebnis ist eine relle Zahl (Im Gegensatz zum Kreuzprodukt, dessen Ergebnis ein Vektor ist).

    Details  
    { "DBS": "DE:DBS:56031" }

  • Beweise über die Vektorgeometrie | V.10

    Es gibt in der Mathematik den ein oder anderen Beweis, den man nur über die vektorielle Geometrie führen kann. Einige dieser Beweisverfahren werden wir hier vorstellen. 1. Wir werden prüfen, ob Vektoren „linear abhängig“ oder „linear unabhängig“ sind („Linearkombinationen“ hängen damit zusammen) 2. Wir werden „Teilverhältnisse“ bei Strecken und Geraden berechnen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010661" }

  • Berechnungen am Dreieck mithilfe des Skalarproduktes

    Beweis und Anwendung des Skalarproduktes mit der dynamischen Geometriesoftware EUKLID und dem CAS Derive (Jahrgangsstufe 12).; Lernressourcentyp: Unterrichtsplanung; Lernmaterial; Arbeitsblatt (interaktiv); Arbeitsblatt (druckbar); Mindestalter: 15; Höchstalter: 18

    Details  
    { "DBS": "DE:DBS:52726" }

  • Skalarprodukt Beweise, Beispiel 1 | V.10.04

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010675" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 Eine Seite vor Zur letzten Seite