Ergebnis der Suche

Ergebnis der Suche nach: ( (Freitext: SCHNITTMENGE) und (Schlagwörter: VEREINIGUNG) ) und (Schlagwörter: ADDITIONSSATZ)

Es wurden 4 Einträge gefunden


Treffer:
1 bis 4
  • Additionssatz | Wahrscheinlichkeitsrechnung Formeln W.15.01

    Der Additionssatz sagt im Wesentlichen aus, dass man nichts doppelt rechnen darf. Konkret heißt das: Die Häufigkeit der Vereinigung zweier Mengen, bestimmt man über die Summe der Häufigkeit von beiden Mengen, abzüglich der Schnittmenge beider Mengen. == P(AUB)=P(A)+P(B)-P(A?B)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010750" }

  • Additionssatz, Beispiel 2 | Wahrscheinlichkeitsrechnung Formeln W.15.01

    Der Additionssatz sagt im Wesentlichen aus, dass man nichts doppelt rechnen darf. Konkret heißt das: Die Häufigkeit der Vereinigung zweier Mengen, bestimmt man über die Summe der Häufigkeit von beiden Mengen, abzüglich der Schnittmenge beider Mengen. == P(AUB)=P(A)+P(B)-P(A?B)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010752" }

  • Additionssatz, Beispiel 3 | Wahrscheinlichkeitsrechnung Formeln W.15.01

    Der Additionssatz sagt im Wesentlichen aus, dass man nichts doppelt rechnen darf. Konkret heißt das: Die Häufigkeit der Vereinigung zweier Mengen, bestimmt man über die Summe der Häufigkeit von beiden Mengen, abzüglich der Schnittmenge beider Mengen. == P(AUB)=P(A)+P(B)-P(A?B)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010753" }

  • Additionssatz, Beispiel 1 | Wahrscheinlichkeitsrechnung Formeln W.15.01

    Der Additionssatz sagt im Wesentlichen aus, dass man nichts doppelt rechnen darf. Konkret heißt das: Die Häufigkeit der Vereinigung zweier Mengen, bestimmt man über die Summe der Häufigkeit von beiden Mengen, abzüglich der Schnittmenge beider Mengen. == P(AUB)=P(A)+P(B)-P(A?B)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010751" }

Vorschläge für alternative Suchbegriffe:

[ Erziehungsgeschichte [ Wertung [ Bildungsgeschichte [ Geschichte [ Torspiel [ Tafelbild [ Sachkompetenz [ Orientierung [ Mittlerer Schulabschluss [ Mittlere Reife [ Methodenkompetenz [ Methode [ Mengenlehre [ Mathematikunterricht [ Kompetenzorientierte Methode [ Kompetenzerwerb